Advertisement

Letters in Mathematical Physics

, Volume 30, Issue 2, pp 99–104 | Cite as

Finite-dimensional coadjoint orbits in loop algebras

  • J. C. Hurtubise
Article
  • 58 Downloads

Abstract

We give a classification of the finite dimensional coadjoint orbits in the dual of the algebra\(\tilde {\mathfrak{g} }\)+ of polynomials in one variable with values in a semi-simple Lie algebra\(\mathfrak{g}\), and generalise this result to algebras defined over an arbitrary Riemann surface.

Mathematics Subject Classifications (1991)

58F05 70H05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, M., On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation,Invent. Math. 50, 219–248 (1979).Google Scholar
  2. 2.
    Adams, M. R., Harnad, J., and Hurtubise, J., Isospectral Hamiltonian flows in finite and infinite dimensions II. Integration of flows,Comm. Math. Phys. 134, 555–585 (1990).Google Scholar
  3. 3.
    Adams, M. R., Harnad, J., and Previato, E., Isospectral Hamiltonian flows in finite and infinite dimensions I. Generalised Moser systems and moment maps into loop algebras,Comm. Math. Phys. 117, 451–500 (1988).Google Scholar
  4. 4.
    Adler, M. and Van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras, and curves,Adv. Math. 38, 267–317 (1980); Linearization of Hamiltonian systems, Jacobi varieties and representation theory,Adv. Math. 38, 318-379 (1980).Google Scholar
  5. 5.
    Frenkel, I. B., Reiman, A. G., and Semenov-Tian-Shansky, M. A., Graded Lie algebras and completely integrable Hamiltonian systems,Soviet Math. Dokl. 20, 811–814 (1979).Google Scholar
  6. 6.
    Krichever, I. M., Methods of algebraic geometry in the theory of nonlinear equations,Russian Math. Surveys 32, 185–213 (1977).Google Scholar
  7. 7.
    Krichever, I. M. and Novikov, S. P., Holomorphic bundles over algebraic curves and nonlinear equations,Russian Math. Surveys 32, 53–79 (1980).Google Scholar
  8. 8.
    Kostant, B., The Solution to a generalized Toda lattice and representation theory,Adv. Math. 34, 195–338 (1979).Google Scholar
  9. 9.
    Moser, J., Geometry of quadrics and spectral theory,The Chern Symposium, Berkeley, June 1979, Springer, New York (1980), pp. 147–188.Google Scholar
  10. 10.
    Reiman, A. G., and Semenov-Tian-Shansky, M. A., Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I, II,Invent. Math. 54, 81–100 (1979);63, 423-432 (1981).Google Scholar
  11. 11.
    Symes, W., Systems of Toda type, inverse spectral problems and representation theory,Invent. Math. 59, 13–51 (1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. C. Hurtubise
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations