Advertisement

Journal of Optimization Theory and Applications

, Volume 67, Issue 3, pp 421–435 | Cite as

New general guidance method in constrained optimal control, part 1: Numerical method

  • B. Kugelmann
  • H. J. Pesch
Contributed Papers

Abstract

A very fast numerical method is developed for the computation of neighboring optimum feedback controls. This method is applicable to a general class of optimal control problems (for example, problems including inequality constraints and discontinuities) and needs no on-line computation, except for one matrix-vector multiplication. The method is based on the so-called accessory minimum problem. The necessary conditions for this auxiliary optimal control problem form a linear multipoint boundary-value problem with linear jump conditions, which is especially well suited for numerical treatment. In the second part of this paper, the performance of the guidance scheme is shown for the heating-constrained cross-range maximization problem of a space-shuttle-orbiter-type vehicle.

Key Words

Neighboring extremals accessory minimum problem feedback controls closed-loop controls inequality constraints multiple shooting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pesch, H. J.,Numerische Berechnung optimaler Flugbahnkorrekturen in Echtzeitrechnung, Munich University of Technology, Doctoral Dissertation, 1978.Google Scholar
  2. 2.
    Pesch, H. J.,Numerical Computation of Neighboring Optimum Feedback Control Schemes in Real Time, Applied Mathematics and Optimization, Vol. 5, pp. 231–252, 1979.Google Scholar
  3. 3.
    Pesch, H. J.,Echtzeitberechnung fastoptimaler Rückkopplungssteuerungen bei Steuerungsproblemen mit Beschränkungen, Munich University of Technology, Habilitationsschrift, 1986.Google Scholar
  4. 4.
    Pesch, H. J.,Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems, Part 2: A Correction Method Based on Multiple Shooting, Optimal Control Applications and Methods, Vol. 10, pp. 147–171, 1989.Google Scholar
  5. 5.
    Kelley, H. J.,Guidance Theory and Extremal Fields, IRE Transactions on Automatic Control, Vol. AC-7, pp. 75–82, 1962.Google Scholar
  6. 6.
    Breakwell, J. V., andHo, Y. C.,On the Conjugate Point Condition for the Control Problem, International Journal of Engineering Science, Vol. 2, pp. 565–579, 1965.Google Scholar
  7. 7.
    Pesch, H. J.,Real-Time Computation of Feedback Controls for Constrained Optimal Control Problems, Part 1: Neighboring Extremals, Optimal Control Applications and Methods, Vol. 10, pp. 129–145, 1989.Google Scholar
  8. 8.
    Breakwell, J. V., Speyer, J. L., andBryson, A. E.,Optimization and Control of Nonlinear Systems Using the Second Variation, SIAM Journal on Control, Vol. 1, pp. 193–223, 1963.Google Scholar
  9. 9.
    Kelley, H. J.,An Optimal Guidance Approximation Theory, IEEE Transactions on Automatic Control, Vol. AC-9, pp. 375–380, 1964.Google Scholar
  10. 10.
    Bryson, A. E., andHo, Y. C.,Applied Optimal Control, Ginn and Company, Waltham, Massachusetts, 1969.Google Scholar
  11. 11.
    Lee, I.,Optimal Trajectory, Guidance, and Conjugate Points, Information and Control, Vol. 8, pp. 589–606, 1965.Google Scholar
  12. 12.
    Kugelmann, B.,Numerische Berechnung optimaler Flugbahnkorrekturen für den Wiederaufstieg einer Mondfähre und das Bremsmanöver eines Raumfahrzeuges in der Erdatmosphäre, Munich University of Technology, Diploma Thesis, 1983.Google Scholar
  13. 13.
    Coddington, E. A., andLevinson, N.,Theory of Ordinary Differential Equations, McGraw-Hill, New York, New York, 1955.Google Scholar
  14. 14.
    Bulirsch, R.,Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, DLR, Oberpfaffenhofen, Germany, Report of the Carl-Cranz Gesellschaft, 1971.Google Scholar
  15. 15.
    Stoer, J., andBulirsch, R.,Introduction to Numerical Analysis, Springer, New York, New York, 1980.Google Scholar
  16. 16.
    Oberle, H. J.,Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell, Munich University of Technology, Habilitationsschrift, 1982.Google Scholar
  17. 17.
    Kugelmann, B.,Zeitminimale Berechnung von Rückkopplungssteuerungen für optimale Lenkungsprobleme mit Anwendung in der Raumfahrt, Munich University of Technology, Doctoral Dissertation, 1986.Google Scholar
  18. 18.
    Speyer, J. L., andBryson, A. E.,A Neighboring Optimum Feedback Control Scheme Based on Estimated Time-to-Go with Application to Reentry Flight Paths, AIAA Journal, Vol. 6, pp. 769–776, 1968.Google Scholar
  19. 19.
    Powers, W. F.,A Method for Comparing Trajectories in Optimum Linear Perturbation Guidance Schemes, AIAA Journal, Vol. 6, pp. 2451–2452, 1968.Google Scholar
  20. 20.
    Powers, W. F.,Techniques for Improved Convergence in Neighboring Optimum Guidance, AIAA Journal, Vol. 8, pp. 2235–2241, 1970.Google Scholar
  21. 21.
    Krämer-Eis, P.,Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen, University of Bonn, Doctoral Dissertation, 1985.Google Scholar
  22. 22.
    Hymas, C. E., Cavin, R. K., andColumnga, D.,Neighboring Extremals for Optimal Control Problems, AIAA Journal, Vol. 11, pp. 1101–1109, 1973.Google Scholar
  23. 23.
    Wood, L. J.,Comment on: Neighboring Extremals for Optimal Control Problems, AIAA Journal, Vol. 12, pp. 1452–1454, 1974.Google Scholar
  24. 24.
    Lee, A. Y.,Neighboring Extremals of Dynamic Optimization Problems with Path Equality Constraints, Journal of Optimization Theory and Applications, Vol. 57, pp. 519–536, 1988.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • B. Kugelmann
    • 1
  • H. J. Pesch
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of TechnologyMunichGermany
  2. 2.Faculty of Computer ScienceUniversity of the Armed ForcesMunichGermany

Personalised recommendations