Advertisement

Journal of Optimization Theory and Applications

, Volume 64, Issue 2, pp 379–397 | Cite as

Efficient hybrid conjugate gradient techniques

  • D. Touati-Ahmed
  • C. Storey
Contributed Papers

Abstract

Descent property and global convergence proofs are given for a new hybrid conjugate gradient algorithm. Computational results for this algorithm are also given and compared with those of the Fletcher-Reeves method and the Polak-Ribière method, showing a considerable improvement over the latter two methods. We also give new criteria for restarting conjugate gradient algorithms that prove to be computationally very efficient. These criteria provide a descent property and global convergence for any conjugate gradient algorithm using a nonnegative update β.

Key Words

Static optimization Fletcher-Reeves method Polak-Ribière method hybrid conjugate-gradient algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fletcher, R.,Practical Methods of Optimization, Vol. 1, Unconstrained Optimization, Wiley, Chichester, England, 1980.Google Scholar
  2. 2.
    Goldstein, A. A.,On Steepest Descent. SIAM Journal on Control, Vol. 3, pp. 147–151, 1965.Google Scholar
  3. 3.
    Fletcher, R., andReeves, C. M.,Function Minimization by Conjugate Gradients, Computer Journal, Vol. 7, pp. 143–154, 1964.Google Scholar
  4. 4.
    Polak, E., andRibière, G.,Note sur la Convergence des Méthodes de Directions Conjuguées, Revue Française, Information et Recherche Opérationelle, Vol. 16, pp. 35–43, 1969.Google Scholar
  5. 5.
    Powell, M. J. D.,Nonconvex Minimization Calculations and the Conjugate Gradient Method, Report No. DAMTP 1983/NA14, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England, 1983.Google Scholar
  6. 6.
    Al-Baali, M.,Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line-Search, IMA Journal of Numerical Analysis, Vol. 5, pp. 121–124, 1985.Google Scholar
  7. 7.
    Powell, M. J. D.,Restart Procedures for the Conjugate Gradient Method, Mathematical Programming, Vol. 12, pp. 241–254, 1977.Google Scholar
  8. 8.
    Powell, M. J. D.,Convergence Properties of Algorithms for Nonlinear Optimization, Report No. DAMTP 1985/NA1, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England, 1985.Google Scholar
  9. 9.
    Shanno, D. F.,Globally Convergent Conjugate Gradient Algorithms, Mathematical Programming, Vol. 33, pp. 61–67, 1985.Google Scholar
  10. 10.
    Touati-Ahmed, D., andStorey, C.,Globally Convergent Hybrid Conjugate Gradient Methods, Mathematics Research Report No. 196, Department of Mathematics, Loughborough University of Technology, Loughborough, Leicestershire, England, 1986.Google Scholar
  11. 11.
    Wolfe, M. A.,Numerical Methods for Unconstrained Optimization: An Introduction, Van Nostrand Reinhold, London, England, 1978.Google Scholar
  12. 12.
    Touati-Ahmed, D.,Efficient Hybrid Conjugate-Gradient Techniques, PhD Thesis, Department of Mathematics, Loughborough University of Technology, Loughborough, Leicestershire, England, 1988.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • D. Touati-Ahmed
    • 1
  • C. Storey
    • 1
  1. 1.Department of MathematicsLoughborough University of TechnologyLoughboroughEngland

Personalised recommendations