Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Design of optimal observers with specified eigenvalues via shifted Legendre polynomials

  • 77 Accesses

  • 5 Citations

Abstract

The quadratic performance measure of estimation errors in approximated by using the Legendre polynomial approach for the design of optimal observers with specified distinct and multiple eigenvalues. This method is simple as compared with other design techniques of optimal observers. One example is illustrated, and only a small number (m=6) of shifted Legendre series are needed to produce a much better result than that obtained by the convenient block-pulse function.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kalman, R. E., andBucy, R. S.,New Results in Linear Filtering and Prediction Theory, Transactions of the ASME, Series D, Journal of Basic Engineering, Vol. 83, pp. 94–107, 1961.

  2. 2.

    Luenberger, D. G.,Observing the State of a Linear System, IEEE Transactions on Military Electronics, Vol. MIL-8, pp. 74–80, 1964.

  3. 3.

    Cumming, S. D. G.,Design of Observer of Reduced Dynamics, Electronics Letters, Vol. 5, pp. 213–214, 1969.

  4. 4.

    Yuksel, Y. O., andBongiorno, J. J., Jr.,Observers for Linear Multivariable Systems with Applications, IEEE Transactions on Automatic Control, Vol. AC-16, pp. 603–613, 1971.

  5. 5.

    Missaghie, M. M., andFairman, F. W.,Sensitivity Reducing Observers for Optimal Feedback Control, IEEE Transactions on Automatic Control, Vol. AC-22, pp. 952–957, 1977.

  6. 6.

    Ramar, K., andGourishankar, V.,Optimal Observers with Specified Eigenvalues, International Journal of Control, Vol. 27, pp. 239–244, 1978.

  7. 7.

    O'Reilly, J.,Observers for Linear Systems, Academic Press, London, England, 1983.

  8. 8.

    Chen, C. F., andHsiao, C. H.,Design of Piecewise-Constant Gains for Optimal Control via Walsh Functions, IEEE Transactions on Automatic Control, Vol. AC-20, pp. 596–603, 1975.

  9. 9.

    Hsu, N. S., andCheng, B.,Analysis and Optimal Control of Time-Varying Linear Systems via Block-Pulse Functions, International Journal of Control, Vol. 33, pp. 1107–1122, 1981.

  10. 10.

    Hwang, C., andShih, Y. P.,Parameter Identification via Laguerre Polynomials, International Journal of Systems Science, Vol. 13, pp. 209–217, 1982.

  11. 11.

    Chang, R. Y., andWang, M. L.,Shifted Legendre Direct Method for Variational Problems, Journal of Optimization Theory and Applications, Vol. 39, pp. 299–307, 1983.

  12. 12.

    Wang, M. L., andChang, R. Y.,Optimal Control of Linear Distributed Parameter Systems by Shifted Legendre Polynomial Functions, Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 105, pp. 222–226, 1983.

  13. 13.

    Chou, J. H., andHorng, I. R.,Shifted Legendre Series Analysis of Linear Optimal Control Systems Incorporating Observers, International Journal of Systems Science (to appear).

  14. 14.

    Paraskevopoulos, P. N.,Chebyshev Series Approach to System Identification, Analysis and Optimal Control, Journal of the Franklin Institute, Vol. 316, pp. 135–157, 1983.

  15. 15.

    Horng, I. R., andChou, J. H.,Shifted Chebyshev Direct Method for Solving Variational Problems, International Journal of Systems Science (to appear).

  16. 16.

    Kung, F. C., andYeh, Y. M.,Optimal Observer with Specified Eigenvalues for Time-Invariant Linear System, Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 102, pp. 148–150, 1980.

  17. 17.

    Abramowitz, M., andStegun, I. A.,Handbook of Mathematical Functions, National Bureau of Standards, Washington, DC, 1967.

  18. 18.

    Carnahan, B., Luther, H. A., andWilkes, J. O.,Applied Numerical Methods, John Wiley & Sons, New York, New York, 1969.

  19. 19.

    Ogata, K.,State-Space Analysis of Control Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

  20. 20.

    Kuester, J. L., andMize, J. H.,Optimization Technique with Fortran, McGraw-Hill, New York, New York, 1973.

Download references

Author information

Additional information

Communicated by D. G. Luenberger

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horng, I.R., Chou, J.H. Design of optimal observers with specified eigenvalues via shifted Legendre polynomials. J Optim Theory Appl 51, 179–188 (1986). https://doi.org/10.1007/BF00938607

Download citation

Key Words

  • Design
  • optimal observers
  • specified eigenvalues
  • shifted Legendre Polynomials