Plant Systematics and Evolution

, Volume 166, Issue 1–2, pp 11–30 | Cite as

Biosystematics of two sympatric species ofEucharis (Amaryllidaceae)

  • Alan W. Meerow
Article

Abstract

Eucharis candida andE. formosa are two often sympatric species of bulbous geophytes restricted to neotropical rain forest understory. The species are most common in eastern Ecuador, and are the only two east Ecuadorean species of the genus found north of the Pastaza valley. Data from phenetic, karyotypic, and preliminary isozyme electrophoretic analyses of both species are represented. The species are distinguishable phenetically and karyologically, but isozyme-based relationships are more complex. Phenetic resolution of the isozyme phenotypes supports recognition of two species in Ecuador. A Peruvian isolate ofE. formosa, though not morphologically distinct, shows both allozyme and chromosomal divergence from Ecuadorean populations. Cladistic relationships based on overall allozyme data do not support species distinction, but a novel electrophoretic phenotype for glutathione reductase is shared only by individuals ofE. candida. An apparent geographic component within the monophyletic groups resolved in the cladogram suggests that some degree of gene flow between these two species has been maintained without the complete loss of morpholgoical species identity. This may have been mediated either by artificial population structures due to a probable long history of cultivation, or via Pleistocene refugia effects. Both species may have originated in eastern Ecuador from a common ancestral population which has since radiated outward, perhaps several times.

Key words

Angiosperms monocotyledons Amaryllidaceae Eucharis Phenetics chromosome morphology isozyme electrophoresis speciation sibling species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. P., 1969: Differential staining of aborted and non-aborted pollen. — Stain Technol.44: 177–122.Google Scholar
  2. Ashton, P. S., G. Yik-Yuen, F. W., Robertson, 1984: Electrophoretic and morphological comparisons in ten rain forest species ofShorea (Dipterocarpaceae). — Bot. J. Linn. Soc.89: 293–304.Google Scholar
  3. Babbel, G. R., Selander, R. K., 1974: Genetic variability in edaphically restricted and widespread plant species. — Evolution28: 619–630.Google Scholar
  4. Battaglia, E., 1955: Chromosome morphology and terminology. — Caryologia8: 178–197.Google Scholar
  5. Chou, C.-H., Hwang, Y.-H., Hwang, S.-Y., 1986: A biochemical aspect of phylogenetic study ofBambusaceae in Taiwan. 4. The generaArundinaria, Pseudosasa, Semiarundinaria, Shibataea, Sinobambusa, andYushania. — Bot. Bull. Academia Sinica27: 117–131.Google Scholar
  6. Cormack, R. M., 1971: A review of classification. — J. Royal Statist. Soc. A.134: 321–367.Google Scholar
  7. Crawford, D. J., 1983: Phylogenetic and systematic inferences from electrophoretic studies. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding A, pp. 257–287. — Amsterdam: Elsevier.Google Scholar
  8. Farris, J. S., 1970: Methods for computing Wagner trees. — Syst. Zool.19: 83–92.Google Scholar
  9. Gottlieb L. D., 1981: Electrophoretic evidence and plant populations. — InReinhold, L., Harborne, J., Swain, T., (Eds.): Progress in phytochemistry7: 46. — New York: Pergamon Press.Google Scholar
  10. —, 1982: Conservation and duplication of isozymes in plants. — Science216: 373–379.Google Scholar
  11. —, 1984: InGrant, W. F., (Ed.): Plant biosystematics, pp. 242–257. — Orlando, FL: Academic Press.Google Scholar
  12. Hames, B. D., Rickwood, D., 1981: Gel electrophoresis of proteins. A practical approach. — Oxford: IRL Press.Google Scholar
  13. Hamrick, J. L., Loveless, M. D., 1986: Isozyme variation in tropical trees: procedures and prelininary results. — Biotropica18: 201–207.Google Scholar
  14. Hendy, M. D., Penny, D., 1982: Branch and bound algorithms to determine minimal evolutionary trees. — Math. Biosc.59: 277–290.Google Scholar
  15. Heywood, J. S., Fleming, T. H., 1986: Patterns of allozyme variation in three Costa Rica species ofPiper. — Biotropica18: 208–213.Google Scholar
  16. Janzen, D. H., 1971: Euglossine bees as long-distance pollinators of tropical plants. — Science171: 203–205.Google Scholar
  17. Kaplan, J. C., 1968: Electrophoretic study of glutathione reductase in human erythrocytes and leucocytes. — Science217: 256–258.Google Scholar
  18. Kirkpatrick, K. J., Decker, D. S., Wilson, H. D., 1985: Allozyme differentiation in theCucurbita pepo complex:C. pepo var.medullosa vs.C. texana. — Econ. Bot.39: 289–299.Google Scholar
  19. Kluge, G., Farris, J. S., 1969: Quantitative phyletics and the evolution of anurans. — Syst. Zool.18: 1–32.Google Scholar
  20. Lewis, W. H., 1986: The Jivaro Indians: notes on an expedition. — Discovery17: 2–6.Google Scholar
  21. Meerow, A. W., 1987a: Biosystematics of tetraploidEucharis (Amaryllidaceae). — Ann. Missouri Bot. Gard.74: 291–309.Google Scholar
  22. —, 1987b: Chromosome cytology ofEucharis, Caliphruria andUrceolina (Amaryllidaceae). — Amer. J. Bot.74: 1560–1576.Google Scholar
  23. —, 1989: Systematic of the Amazon lilies,Eucharis andCaliphruria. — Ann. Missouri Bot. Gard.75: 136–220.Google Scholar
  24. Nei, M., 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.Google Scholar
  25. Prance, G. T., 1982a: A review of the phytogeographic evidences for Pleistocene climate changes in the Neotropics. — Ann. Missouri Bot. Gard.69: 594–624.Google Scholar
  26. —, 1982b, (Ed.): Biological diversity in the tropics. — New York: Columbia University Press.Google Scholar
  27. Schlarbaum, S. E., Tsuchiya, T., 1984: Cytotaxonomy and phylogeny in certain species ofTaxodiaceae. — Pl. Syst. Evol.147: 29–54.Google Scholar
  28. Shaw, C. R., Prasad, R., 1970: Starch gel electrophoresis of enzymes — a compilation of recipes. — Biochem. Genet.4: 297–320.PubMedGoogle Scholar
  29. Shields, C. R., Orton, T. J., Stuber, C. W., 1983: An outline of general resource needs and procedures for the electophoretic separation of active enzymes from plant tissue. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding A, pp. 443–468. — Amsterdam: Elsevier.Google Scholar
  30. Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: W. H. Freeman.Google Scholar
  31. Storey, W. B., Mann, J. D., 1967: Chromosome contraction by o-isopropyl-N-phenyl-carbamate (IPC). — Stain Technol.42: 15–18.PubMedGoogle Scholar
  32. Sytsma, K. J., Schaal, B. A., 1985: Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data. — Evolution39: 582–593.Google Scholar
  33. Tjio, J. H., Hagberg, A., 1951: Cytological studies on some X-ray mutants of barley. — An. Estac. Exp. Aula Dei2: 149–167.Google Scholar
  34. Torres, A. M., Hart, G. E., Mau-Lastovicka, T., 1982: Citrus isozymes. — J. Heredity73: 335–339.Google Scholar
  35. Vallejos, C. E., 1983: Enzyme staining activity. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding A, pp. 469–516. — Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Alan W. Meerow
    • 1
    • 2
  1. 1.Research and Education CenterUniversity of Florida-IFASFt. LauderdaleUSA
  2. 2.Fairchild Tropical GardenMiamiUSA

Personalised recommendations