Advertisement

Journal of Applied Electrochemistry

, Volume 10, Issue 1, pp 109–125 | Cite as

Studies concerning charged nickel hydroxide electrodes I. Measurement of reversible potentials

  • R. Barnard
  • C. F. Randell
  • F. L. Tye
Papers

Abstract

Reversible potentials (ER) have been measured for nickel hydroxide/oxyhydroxide couples over a range of KOH concentrations from 0·01–10 M. It is shown that the couples derived from the parentα- andβ-Ni(OH)2 systems can be distinguished by the relative change in KOH level on oxidation and reduction. In the case of couples derived from theα-class of materials a dependence of 0·470 moles of KOH per 2e change is found compared with 0·102 moles of KOH per 2e change for theβ-class of materials. Couples derived from theα- andβ-Ni(OH)2 systems can be encountered in a series of ‘activated’ and ‘de-activated’ forms having a range of formal potentialsE 0 . ‘Activated’. and ‘de-activated’β-Ni(OH)2/β-NiOOH couples are found to lie in the range 0·443–0·470 V whilstα-Ni(OH)2/γ-NiOOH couples lie in the range 0·392–0·440 V w.r.t. Hg/HgO/KOH. It is demonstrated for ‘de-activated’,β-Ni(OH)2/β-NiOOH couples thatER is independent of the degree of oxidation of the nickel cation between states of charge of 25% and 70%. SimilarlyER is constant for states of charge between 12% and 60% for ‘activated’α-Ni(OH)2/γ-NiOOH couples. The constant potential regions are considered to be derived from heterogeneous equilibria between pairs of co-existing phases both containing nickel in upper and lower states of oxidation. Differences inE 0 between the ‘activated’ and ‘de-activated’ couples are considered to be related to the degree of order/disorder in the crystal lattice.

Keywords

Oxidation Physical Chemistry Nickel Hydroxide Crystal Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. C. Milner and U. B. Thomas, in ‘Advances in Electrochemistry and Electrochemical Engineering’ Vol. 5, Interscience, New York (1967) p. 42.Google Scholar
  2. [2]
    J. P. Hoare, ‘The Electrochemistry of Oxygen’ Interscience, New York (1968).Google Scholar
  3. [3]
    S. U. Falk and A. J. Salkind, ‘Alkaline Storage Batteries’, Wiley and Sons, London, New York (1969) p. 48.Google Scholar
  4. [4]
    G. W. D. Briggs,Chem. Soc. Specialist Periodical Reports, Electrochemistry 4 (1974) 33.Google Scholar
  5. [5]
    D. J. Ives and G. J. Janz, ‘Reference Electrodes’, Academic Press, New York, London (1961) p. 331.Google Scholar
  6. [6]
    J. Zedner,Z. Elektrochem. 11 (1905) 809.Google Scholar
  7. [7]
    Idem, ibid 12 (1906) 463.Google Scholar
  8. [8]
    Idem, ibid 13 (1907) 752.Google Scholar
  9. [9]
    F. Foerster,Z. Elektrochem. 13 (1907) 414.Google Scholar
  10. [10]
    Idem, ibid 14 (1908) 285.Google Scholar
  11. [11]
    J. Besson,C.R. Acad. Sci. Paris 23 (1946) 28.Google Scholar
  12. [12]
    F. Kornfeil,Proc. 12th US Army Battery Research and Development Conference (1958) p. 22.Google Scholar
  13. [13]
    B. E. Conway and P. L. Bourgault,Canad. J. Chem. 37 (1959) 292.Google Scholar
  14. [14]
    Idem, ibid 38 (1960) 1557.Google Scholar
  15. [15]
    Idem, ibidB. E. Conway and P. L. Bourgault,Canad. J. Chem. 40 (1962) 1690.Google Scholar
  16. [16]
    B. E. Conway and P. L. Bourgault,Trans. Faraday. Soc. 58 (1962) 593.Google Scholar
  17. [17]
    B. E. Conway and E. Gileadi,Canad. J. Chem. 40 (1962) 1933.Google Scholar
  18. [18]
    H. Bode, K. Dehmelt and J. Witte,Electrochim. Acta 11 (1966) 1079.Google Scholar
  19. [19]
    H. Bode, K. Dehemelt and J. Witte,Z. Anorg. Allg. Chem. 1 (1969) 366.Google Scholar
  20. [20]
    E. A. Kaminskaya, N. Yu. Uflyand and S. A. Rozenteveig,Sbornik. Rab. Khim. Istochnikam Toka 4 (1969) 13.Google Scholar
  21. [21]
    N. Yu. Uflyand, A. M. Novakovskii and S. A. Osentsveig,Electrokhimiya 3 (1967) 537.Google Scholar
  22. [22]
    R. Barnard, G. T. Crickmore, J. A. Lee and F. L. Tye,J. Appl. Electrochem. Google Scholar
  23. [23]
    D. M. MacArthur,J. Electrochem. Soc. 117 (1970) 422.Google Scholar
  24. [24]
    P. Kelson, A. D. Sperrin and F. L. Tye, ‘Power Sources 4’, edited by D. H. Collins, Oriel Press (1973) p. 201.Google Scholar
  25. [25]
    E. Hausler, ‘Power Sources’ edited by D. H. Collins, Pergamon Press (1966) p. 287.Google Scholar
  26. [26]
    R. S. McEwen,J. Phys. Chem. 75 (1971) 1782.Google Scholar
  27. [27]
    G. W. D. Briggs and W. F. K. Wynne-Jones,Electrochim. Acta 7 (1962) 241.Google Scholar
  28. [28]
    A. B. Scott,J. Electrochem. Soc. 107 (1960) 941.Google Scholar
  29. [29]
    K. V. Kordesch, ‘Batteries’ Vol. 1 ‘Manganese Dioxide’ edited by K. V. Kordesch, Marcel Dekker, N.Y. (1974) p. 82, 84.Google Scholar
  30. [30]
    W. Fischer,Electrochim. Acta 21 (1976) 1001.Google Scholar
  31. [31]
    Idem, Paper presented atEuchem. Conference Le Hohwald (1977).Google Scholar
  32. [32]
    L. N. Sagoyan, Yu. M. Gulamov, P. Z. Barsukov and V. E. Dmitrenko,28th ISE Meeting, Bulgaria (1977) Extended Abstract no. 82.Google Scholar
  33. [33]
    D. Tuomi,J. Electrochem. Soc. 112 (1965) 1.Google Scholar
  34. [34]
    A. A. Yakovleva and Yu. N. Chernykh,Electrokhimiyia 6 (1970) 1671.Google Scholar
  35. [35]
    P. D. Lukovstev,Soviet Electrochem. 3 (1961) 156.Google Scholar
  36. [36]
    G. W. D. Briggs and M. Fleischmann,Trans. Faraday Soc. 67 (1971) 2397.Google Scholar
  37. [37]
    O. Glemser and J. Einerhand,Z. Anorg. Chem. 261 (1950) 26.Google Scholar
  38. [38]
    R. Barnard, C. F. Randell and F. L. Tye,J. Appl. Electrochem., to be published.Google Scholar
  39. [39]
    G. N. Lewis and M. Randall, ‘Thermodynamics’, McGraw-Hill Co, New York, London (1932) p. 327.Google Scholar
  40. [40]
    G. C. Akerlof and P. Bender,J. Amer. Chem. Soc. 70 (1948) 2366.Google Scholar
  41. [41]
    G. C. Akerlof and C. Kegeles,ibid 62 (1940) 620.Google Scholar
  42. [42]
    H. Bartl, H. Bode, G. Sterr and J. Witte,Electrochim. Acta 16 (1971) 615.Google Scholar
  43. [43]
    V. A. Volynskii and Yu. N. Chernykh,Electrokhimiya 13 (1977) 1874.Google Scholar
  44. [44]
    J. Labat,Ann Chim. 9 (1964) 399.Google Scholar
  45. [45]
    S. A. Aleshkevich, E. J. Golovchenko, V. P. Morozov and L. N. Sagoyan,Soviet Electrochem. 4 (1968) 530, 1117.Google Scholar
  46. [46]
    O. Rademacher, K. Wiesener and E. Prikryl,Z. Phys. Chem. 258 (1977) 113.Google Scholar
  47. [47]
    IUPAC ‘Selected Constants’, edited by G. Charlot, Butterworths, London (1971) p. 34.Google Scholar
  48. [48]
    R. Barnard, G. T. Crickmore, J. A. Lee and F. L. Tye, ‘Power Sources 6’, edited by D. H. Collins, Academic Press (1977) p. 161.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • R. Barnard
    • 1
  • C. F. Randell
    • 1
  • F. L. Tye
    • 1
  1. 1.Berec Group LimitedGroup Technical CentreLondonUK

Personalised recommendations