Mycorrhizae of nitrogen-fixing legumes

  • D. S. Hayman
Giam VII-Invited Papers

Summary

Most plant species form mycorrhizae, which are symbiotic fungus-root associations. Many plants can also form symbioses with specific bacteria or actinomycetes which produce root nodules and fix atmospheric nitrogen within these nodules. The tripartite mycorrhiza-legume-Rhizobium symbiosis is the subject of this review. Mycorrhizal nitrogen-fixing legumes include many important temperate and tropical crops, e.g. clover, lucerne, beans (Phaseolus andVicia), peas, soybean, cowpea, pigeonpea, groundnuts,Stylosanthes, Pueraria andCentrosema. These forage and grain legumes form endomycorrhiza of the vesicular-arbuscular (VA) type, as do most species of the Mimosoideae and Papilionoideae. Some arborescent legumes also form VA mycorrhiza, e.g.Leucaena, but many, especially the Caesalpinoideae, form mycorrhiza of the ecto-type; some, e.g.Acacia, have both ecto- and VA mycorrhiza. In some legumes, e.g. clover andStylosanthes, mycorrhizal fungi can densely colonize>70% of the root system; in others, e.g. lupins, mycorrhizal infection is usually light. Unlike theRhizobium symbiosis, mycorrhizal symbioses are essentially non-specific. The ability of mycorrhizae to increase plant uptake of phosphate and alleviate P-stress in P-deficient soils leads to increases in nodulation, nitrogen-fixation, P concentration and plant growth. Mycorrhizae also affect trace element uptake, e.g. Cu and Zn, photosynthate supply, water relations and hormonal balance in legumes. Some legumes grow so poorly without mycorrhiza as to be ecologically obligately mycorrhizal. To some extent root geometry determines the degree of dependence of a legume on mycorrhiza, because the fungal hyphae extend the absorbing surface of the root. Where a legume is growing with a non-mycotrophic plant, its competitive ability can be increased by mycorrhiza. Environmental factors and inputs of P and N fertilizer affect the effectiveness of theRhizobium-mycorrhiza interaction. Also disease tolerance of legumes can be affected by mycorrhiza. The practical impact of mycorrhiza in nitrogen-fixing legumes may be considerable. Dual inoculation of leguminous crops with elite strains of mycorrhizal fungi andRhizobium bacteria, in conjunction with minimal N fertilizer and better utilization of less P fertilizer (rock or super), is currently being studied in many countries. Inoculation techniques are being developed for exploitation on a field scale. It is hoped that further investigations, especially in low-input cropping systems, will enable the substantial potential of mycorrhiza in legume productivity to be achieved.

Résumé

La plupart des plantes forment des mycorhizes, c'est à dire des associations symbiotiques des racines avec des champignons. Beaucoup de plantes peuvent aussi former des symbioses avec des bactéries spécifiques ou des actinomycètes qui produisent des nodules racinaires et fixent l'azote atmosphérique dans ces nodules. La symbiose tripartite mycorhize-légumineuse-Rhizobium est le sujet de la présente revue générale. Les légumineuses à mycorhizes fixant l'azote comprennent un grand nombre de cultures importantes des pays tempérés et tropicaux, comme le trèfle, la luzerne, les haricots (Phaseolus etVicia), les pois, le soja, le cajou, l'arachide,Vigna sinensis, Stylosanthes, Pueraria etCentrosema. Ces légumineuses à fourrage et à graines forment des endo-mycorhizes de type vésiculaire-arbusculaire (VA), comme le font le plupart des éspèces de Mimosoideae et de Papilionoideae. Certaines légumineuses arborescentes forment aussi de mycorhizes VA, par exempleLeucaena, mais beaucoup d'entre elles, particulièrement les Caesalpinoideae, forment des ecto-mycorhizes. Certaines, comme lesAcacia, ont à la fois des mycorhizes du type VA et du type ecto. Les champignons mycorrhizogènes peuvent densement coloniser (plus de 70%) les systèmes racinaires de quelques légumineuses comme le trèfle et leStylosanthes, mais ordinairement légèrement colonisent d'autres, eg.Lupinus. A la différence des symbioses àRhizobium, celles des mycorhizes sont essentiellement non-spécifiques. L'aptitude des mycorhizes à accroître l'absorption des phosphates et à réduire la déficience en P dans les sols qui en sont pauvres a pour conséquence d'accroître la nodulation, la fixation de l'azote, ainsi que la teneur en P et la croissance de la plante. Les mycorhizes influence également l'absorption des oligo-éléments, comme Cu et Zn, l'activité photo-synthétique, les relations avec l'eau, et l'équilibre hormonal des légumineuses. Certaines légumineuses poussent si mal en l'absence de mycorhizes qu'on peut les considérer, du point de vue écologique, comme obligatoirement mycotrophiques. La géométrie des racines détérmine dans une certaine mesure le degré de dépendence d'une légumineuse par rapport au mycorhizes. En effet, les hyphes fongiques accroissent la surface absorbante de la racine. Lorsque une légumineuse pousse avec une plante non-mycotrophique, sa compétitivité peut être accrue par la mycorhization. Certains facteurs de l'environnement, ainsi que l'apport de P et de N par des engrais diminuent l'efficacité de l'interactionRhizobium-micorhize. D'autre part la résistance des légumineuses aux maladies peut être affectée par les mycorhizes. L'impact pratique des mycorhizes sur les légumineuses fixant l'azote peut être considérable. La double inoculation avec des souches sélectionnées de champignons mycorhiziens et deRhizobium bactériens, associée à un apport minimal d'engrais azoté et à une meilleure utilisation d'un moins quantité d'engrais phosophoré (de roche ou super-phosphate), est couramment étudiée dans de nombreux pays. Des techniques d'inoculation sur le terrain sont mises au point. On espère que de nouvelles recherches, en particulier sur les systèmes de culture avec faible apport exogène, permettront au potentiel des mycorhizes pour la productivité des légumineuses de se réaliser pleinement.

Resumen

La mayoría de las especies vegetales forman micorrizas, que son asociaciones simbióticas hogno-raíz. Muchas plantas pueden también formar simbiosis con bacterias específicas o actinomicetos, produciendo nódulos radicales fijadores de nitrógeno atmosférico. La simbiosis tripartita micorriza-leguminosa-Rhizobium constituye el tema de esta revisión. Entre las leguminosas micorrizables y fijadoras de nitrógeno se incluyen cultivos importantes tanto de climas templados como tropicales, como son trébol, alfalfa, judía (Phaseolus yVicia), guisante, soja, freijol, guandú, cacahuete,Stylosanthes, Pueraria yCentrosema. Estas leguminosas forrajeras o de grano forman endomicorrizas del tipo vesículo-arbuscular (VA), al igual que la mayoría de las especies de las Mimosoideae y Papilionoideae. Algunas leguminosas arborescentes comoLeucaena también forman micorrizas VA aunque la mayoría, especialmente las pertenecientes a las Cesalpinoideae forman micorrizas de tipo ecto-, aunque se han citado casos como enAcacia que poseen ambos tipos de micorrizas, ecto y VA, simultaneamente. En algunas leguminosas (trébol yStylosanthes) el hongo micorrícico puede colonizar densamente (más del 70%) el sistema radical; en otros casos (Lupinus) la infección micorrícica es por lo general leve. Al contrario de lo que ocurre conRhizobium, las simbiosis micorrícicas son esencialmente no específicas. La capacidad de las micorrizas para incrementar la absorción de P por la planta, superando así la deficiencia en fosfato de los suelos pobres en P, conduce a un incrimento de la nodulación, fijación de nitrógeno, concentración de P y crecimiento de la planta. Las micorrizas también afectan la absorción de oligoelementos como Cu y Zn, la distribución de fotosintato, las relaciones hídricas y el balance hormonal en las leguminosas. Algunas leguminosas crecen con tan poco vigor en ausencia de micorrizas que pueden considerarse, desde un punto de vista ecológico, como obligatoriamente microrrícicas. Hasta cierto punto, la geometría de la raíz determina el grado de dependencia de una leguminosa de la micorriza, ya que las hifas del hongo aumentan la superficie absorbente de la raíz. Cuando una leguminosa crece junto con una planta no micorrizable, su capacidad competitiva puede incrementarse gracias a la micorriza. Diversos factores ambientales y el aporte de fertilizantes de N y P afectan la eficacia de la interacciónRhizobium-micorriza. La tolerancia de las leguminosas a distintas enfermedades puede verse también afectada por las micorrizas. El impacto práctico de las micorrizas en las leguminosas fijadoras de nitrógeno puede ser considerable. En muchos países se está estudiando el efecto de una doble inoculación de cultivos con cepas seleccionadas de hongos micorrícicos y deRhizobium junto con un aporte mínimo de nitrógeno y una mejor utilización de menor cantidad de abono fosfatado (de roca o superfosfato). Se están desarrollando distintas técnicas de inoculación para su explotación a nivel de campo. Se espera que el resultado de estas y otras investigaciones, especialmente en el área de sistemas agrícolas de bajo consumo, permita a las micorrizas desarrollar plenamente su papel en la productividad de las leguminosas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.K. &Robson A.D. 1977 Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas.Australian Journal of Agricultural Research 28, 639–649.Google Scholar
  2. Abbott, L.K. &Robson, A.D. 1978 Growth of subterranean clover in relation to the formation of endomycorrhizas by introduced and indigenous fungi in a field soil.New Phytologist 81, 575–585.Google Scholar
  3. Allen, M.F., Moore, T.S. &Christensen, M. 1980 Phytohormone changes inBouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant.Canadian Journal of Botany 58, 371–374Google Scholar
  4. Allen, O.N. &Allen, E.K. 1981The Leguminosae. Wisconsin: University Press.Google Scholar
  5. Asai, T. 1944 Über die Mykorrhizenbildung der leguminosen Pflanzen.Japanese Journal of Botany 13, 463–485.Google Scholar
  6. Asimi, S., Gianinazzi-Pearson, V. &Gianinazzi, S. 1980 Influence of increasing soil phosphorus levels on interactions between vesicular-arbuscular mycorrhizae andRhizobium in soybeans.Canadian Journal of Botany 58, 2200–2205.Google Scholar
  7. Azcón-G de Aguilar, C., Azcón, R. &Barea, J.M. 1979 Endomycorrhizal fungi andRhizobium as biological fertilizers forMedicago sativa in normal cultivation.Nature, London 279 325–327.Google Scholar
  8. Azcón-G de Aguilar, C., Barea, J.M. & Olivares, J. 1980 Effect ofRhizobium polysaccharides on VA mycorrhiza formation. Abstract No. 18.7, 2nd Int. Symp. Microbial Ecology, University of Warwick, Coventry, U.K.Google Scholar
  9. Bagyaraj, D.J., Manjunath, A. &Patil, R.B. 1979 Interaction between a vesicular-arbuscular mycorrhiza andRhizobium and their effects on soybean in the field.New Phytologist 82, 141–145.Google Scholar
  10. Bailey, J.E. &Safir, G.R. 1978 Effect of benomyl on soybean endomycorrhizae.Phytopathology 68, 1810–1812.Google Scholar
  11. Barrow, N.J., Malajczuk, N. &Shaw, T.C. 1977 A direct test of the ability of vesicular-arbuscular mycorrhiza to help plants take up fixed soil phosphate.New Phytologist 78, 269–276.Google Scholar
  12. Baylis, G.T.S. 1972 Fungi, phosphorus, and the evolution of root systems.Search 3, 257–258.Google Scholar
  13. Bethlenfalvay, G.J., Pacovsky, R.S. &Brown, M.S. 1981 Measurement of mycorrhizal infection in soybeans.Soil Science Society of America Journal 45, 871–875.Google Scholar
  14. Carling, D.E., Riehle, W.G., Brown, M.F. &Johnson, D.R. 1978. Effects of vesicular-arbuscular mycorrhizal fungus on nitrate reductase and nitrogenase activities in nodulating and non-nodulating soybeans.Phytopathology 68, 1590–1596.Google Scholar
  15. Chambers, C.A., Smith, S.E., Smith, F.A., Ramsey, M.D. &Nicholas, D.J.D. 1980 Symbiosis ofTrifolium subterraneum with mycorrhizal fungi andRhizobium trifolii as affected by ammonium sulphate and nitrification inhibitors.Soil Biology and Biochemistry 12, 93–100.Google Scholar
  16. Cooper, K.M. &Tinker, P.B. 1978 Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur.New Phytologist 81, 43–52.Google Scholar
  17. Crush, J.R. 1974 Plant growth responses to vesicular-arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes.New Phytologist 73, 743–749.Google Scholar
  18. Crush, J.R. 1975 Occurrence of endomycorrhizas in soils of the Mackenzie Basin, Canterbury, New Zealand.New Zealand Journal of Agricultural Research 18, 361–364.Google Scholar
  19. Crush, J.R. 1976 Endomycorrhizas and legume growth in some soils of the Mackenzie Basin, Canterbury, New Zealand.New Zealand Journal of Agricultural Research 19, 473–476.Google Scholar
  20. Daft, M.J. &El-Giahmi, A.A. 1974 Effect ofEndogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in french bean (Phaseolus vulgaris).New Phytologist 73, 1139–1147.Google Scholar
  21. Daft, M.J. &El-Giahmi, A.A. 1976Studies on nodulated and mycorrhizal peanuts. Annals of Applied Biology83, 273–276.Google Scholar
  22. Diem, H.G., Jung, G., Mugnier, J., Ganry, F. & Dommergues, Y. 1981 Alginate-entrappedGlomus mosseae for crop inoculation. In Proceedings of 5th NACOM, Université Laval, Quebec, Canada. 16–21 Aug. (Abstract).Google Scholar
  23. Duddridge, J.A., Malibari, A. &Read, D.J. 1980 Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport.Nature, London 287, 834–836.Google Scholar
  24. Gerdemann, J.W. 1968 Vesicular-arbuscular mycorrhiza and plant growth.Annual Review of Phytopathology 6, 397–418.Google Scholar
  25. Germani, G., Ollivier, B. &Diem, H.G. 1982 Interaction ofScutellonema cavenessi andGlomus mosseae on growth and N2-fixation of soybean.Review Nematologica 4, 277–280.Google Scholar
  26. Gianinazzi-Pearson, V. &Diem, H.G. 1982 Endomycorrhizae in the tropics. InMicrobiology of Tropical Soils and Plant Productivity, ed.Dommergues, Y.R. &Diem, H.G. pp. 209–251. The Hague: Nijhoff/Junk.Google Scholar
  27. Gianinazzi-Pearson, V., Fardeau, J.C., Asimi, S. &Gianinazzi, S. 1981 Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybeans.Physiologie Végétale 19, 33–43.Google Scholar
  28. Gildon, A. &Tinker, P.B. 1983 Interactions of vesicular-arbuscular mycorrhizal infections and heavy metals in plants. II. The effects of infection on uptake of copper.New Phytologist 95, 263–268.Google Scholar
  29. Gray, L.E. &Gerdemann, J.W. 1973 Uptake of sulphur-35 by vesicular-arbuscular mycorrhizae.Plant and Soil 39, 687–689.Google Scholar
  30. Hall, I.R. 1980 Growth ofLotus pedunculatus Cav. in an eroded soil containing soil pellets infested with endomycorrhizal fungi.New Zealand Journal of Agricultural Research 23, 103–105.Google Scholar
  31. Hall, I.R. 1984 Field trials assessing the effect of inoculating agricultural soils with endomycorrhizal fungi.Journal of Agricultural Science, Cambridge 102, 725–731.Google Scholar
  32. Hardie, K. &Leyton, L. 1981 The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil.New Phytologist 89, 599–608.Google Scholar
  33. Harley, J.L. &Smith, S.E. 1983Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
  34. Hayman, D.S. 1975 The occurrence of mycorrhiza in crops as affected by soil fertility. InEndomycorrhizas, ed. Sanders, F.E., Mosse, B. & Tinker, P.B. pp. 495–509. London: Academic Press.Google Scholar
  35. Hayman, D.S. 1982 Practical aspects of vesicular-arbuscular mycorrhiza. InAdvances in Agricultural Microbiology, ed. Subba Rao, N.S. pp. 325–373. New Delhi: Oxford & IBH Publishing Co.Google Scholar
  36. Hayman, D.S. 1983 The physiology of vesicular-arbuscular endomycorrhizal symbiosis.Canadian Journal of Botany 61, 944–963.Google Scholar
  37. Hayman, D.S. 1984 Improved establishment of white clover in hill grasslands by inoculation with mycorrhizal fungi. InForage Legumes, British Grassland Society Occasional Symposium 16, ed. Thomson, D.J. pp. 44–47. Hurley: BGS.Google Scholar
  38. Hayman, D.S. &Day, J.M. 1978 Influence of VA mycorrhiza on plant growth: uptake of molybdenum.Rothamsted Report for 1977, Part 1, p. 240.Google Scholar
  39. Hayman, D.S., Day, J.M. &Dye, M. 1986 Preliminary observations on dual inoculation of white clover. Proc. 1st European Symposium on Mycorrhizae, ed. Gianinazzi-Pearson, V. & Gianinazzi, S.. Dijon: INRA Press.Google Scholar
  40. Hayman, D.S., Morris, E.J. &Page, R.J. 1981 Methods for inoculating field crops with mycorrhizal fungi.Annals of Applied Biology 99, 247–253.Google Scholar
  41. Hayman, D.S. &Mosse, B. 1972 Plant growth responses to vesicular-arbuscular mycorrhiza. III. Increased uptake of labile P from soil.New Phytologist 71, 41–47.Google Scholar
  42. Hayman, D.S. andMosse, B. 1979 Improved growth of white clover in hill grasslands by mycorrhizal inoculation.Annals of Applied Biology 93, 141–148.Google Scholar
  43. Hayman, D.S. &Tavares, M. 1985 Plant growth responses to vesicular-arbuscular mycorrhiza. XV. Influence of soil pH on the symbiotic efficiency of different endophytes.New Phytologist 100 367–377.Google Scholar
  44. Islam, R., Ayanaba, A. &Sanders, F.E. 1980 Response of cowpea (Vigna unguiculata) to inoculation with VA mycorrhizal fungi and to rock phosphate fertilization in some unsterilized Nigerian soils.Plant and Soil 54, 107–117.Google Scholar
  45. Jackson, N.E., Miller, R. H. &Franklin, R.E. 1973 The influence of vesicular-arbuscular mycorrhizae on uptake of90Sr from soil by soybeans.Soil Biology and Biochemistry 5, 205–212.Google Scholar
  46. Jakobsen, I. &Nielsen, N.E. 1983 Vesicular-arbuscular mycorrhiza in field-grown crops. I. Mycorrhizal infection in cereals and peas at various times and soil depths.New Phytologist 93, 401–413.Google Scholar
  47. Jensen, A. 1984 Influence of inoculum density of two vesicular-arbuscular mycorrhizal fungi and temperature/light intensity onTrifolium repens.Nordic Journal of Botany 4, 249–259.Google Scholar
  48. Johnson, C.R. &Michelini, S. 1974 Effect of mycorrhizae on container grownAcacia.Proceedings of Florida State Horticultural Society 87, 520–522.Google Scholar
  49. Kormanik, P.P., Bryan, W.C. &Schultz, R.C. 1979 Endomycorrhizal inoculation during transplanting improves growth of vegetatively propagated yellow poplar.The Plant Propagator 23, 4–5.Google Scholar
  50. Kucey, R.M.N. &Paul, E.A. 1982 Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.).Soil Biology and Biochemistry 14, 407–412.Google Scholar
  51. Lambert, D.H., Cole, H. &Baker, D.E. 1980 Variation in the response of alfalfa clones and cultivars to mycorrhizae and phosphorus.Crop Science 20, 615–618.Google Scholar
  52. La Torraca, S. 1979 Effects of inoculation with VA mycorrhiza on growth and nodulation ofVigna unguiculata (L.) Walp in three ‘terra firme’ soils. Dissertation, INPA, Manaus, Brazil.Google Scholar
  53. Lopes, E.S. &Siqueira, J.O. 1981 Vesicular-arbuscular mycorrhizas: their potential in phosphate nutrition in tropical regions. InThe Soil/Root System in Relation to Brazilian Agriculture, ed. Scott Russell, R., Igue, K. & Mehta, Y.R. pp. 225–242. Londrina, Brazil: IAPAR Fundação Instituto Agronômico do Paraná.Google Scholar
  54. Marx, D.H. &Krupa, S.V. 1978 Ectomycorrhizae. InInteractions between Non-pathogenic Soil Microorganisms and Plants, ed. Dommergues, Y.R. & Krupa, S.V. pp. 373–400. Amsterdam: Elsevier.Google Scholar
  55. McIlveen, W.D., Spotts, R.A. &Davis, D.D. 1975 The influence of soil zinc on nodulation, mycorrhizae, and ozone-sensitivity of Pinto bean.Phytopathology 65, 645–647.Google Scholar
  56. Menge, J.A. 1982 Effect of soil fumigants and fungicides on vesicular-arbuscular fungi.Phytopathology 72, 1125–1132.Google Scholar
  57. Menge, J.A. 1983 Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture.Canadian Journal of Botany 61, 1015–1024.Google Scholar
  58. Meyer, F.H. 1973 Distribution of ectomycorrhizae in native and man-made forests. InEctomycorrhizae. Their Ecology and Physiology, ed.Marks, G.C. &Kozlowski, T.T. pp. 79–105. New York: Academic Press.Google Scholar
  59. Moawad, M. 1979 Ecophysiology of vesicular-arbuscular mycorrhiza in the tropics. In:The Soil-Root Interface, ed. Harley, J.L. & Scott Russell, R. pp. 197–209. London: Academic Press.Google Scholar
  60. Mosse, B. 1973 Advances in the study of vesicular-arbuscular mycorrhiza.Annual Review of Phytopathology 11, 171–196.Google Scholar
  61. Mosse, B. 1977 Plant growth responses to vesicular-arbuscular mycorrhiza. X. Responses ofStylosanthes and maize to inoculation in unsterile soils.New Phytologist 78, 277–288.Google Scholar
  62. Mosse, B. 1981. Vesicular-arbuscular mycorrhiza research for tropical agriculture. Research Bulletin 194, Hawaii Institute of Tropical Agriculture and Human Resources, 82 pp.Google Scholar
  63. Mosse, B., Hayman, D.S. &Arnold, D.J. 1973 Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled with 32p.New Phytologist 72, 809–815.Google Scholar
  64. Mosse, B., Hayman, D.S. &Snoad, B. 1980 Vesicular-arbuscular mycorrhiza, field inoculation studies: semi-leafless peas, John Innes.Rothamsted Report for 1979, Part 1, pp. 186–187.Google Scholar
  65. Mosse, B., Powell, C.Ll. &Hayman, D.S. 1976 Plant growth responses to vesiculararbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation.New Phytologist 76, 331–342.Google Scholar
  66. Munns, D.N. &Mosse, B. 1980 Mineral nutrition of legume crops. InAdvances in Legume Science, ed. Summerfield, R.J. & Bunting, A.H. pp. 115–125. London: HMSO.Google Scholar
  67. Nyabenda, P. 1977 Einfluss der Bodentemperatur und organischer Stoffe im Boden auf die Wirkung der vesikulär-arbuskulären Mykorrhiza. Dissertation, University of Göttingen, Germany, 126 pp.Google Scholar
  68. Ollivier, B., Bertheau, Y., Diem, H.G. &Gianinazzi-Pearson, V. 1983 Influence de la varieté deVigna unguiculata dans l'expression de trois associations endomycorrhiziennes à vésicules et arbuscules.Canadian Journal of Botany 61, 354–358.Google Scholar
  69. Olsen, S.R., Cole, C.V., Watanabe, F.S. &Dean, L.A. 1954 Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture. Circular No, 939, pp. 19.Google Scholar
  70. Owusu-Bennoah, E. &Mosse, B. 1979 Plant growth responses to vesicular-arbuscular mycorrhiza. XI. Field inoculation responses in barley, lucerne and onion.New Phytologist 83, 671–679.Google Scholar
  71. Pang, P.C. &Paul, E.A. 1980 Effects of vesicular-arbuscular mycorrhiza on14C and15N distribution in nodulated faba beans.Canadian Journal of Soil Science 60, 241–250.Google Scholar
  72. Polhill, R.M. &Raven, P.H. 1981 (Editors)Advances in Legume Systematics. Royal Botanic Gardens, Kew, 1049 pp.Google Scholar
  73. Porter, D.M. &Beute, M.K. 1972Endogone species in roots of Virginia type peanuts.Phytopathology 62, 783 (Abstr.).Google Scholar
  74. Porter, W.M., Abbott, L.K. &Robson, A.D. 1978 Effect of rate of application of superphosphate on populations of vesicular-arbuscular endophytes.Australian Journal of Experimental Agriculture and Animal Husbandry 18, 573–578.Google Scholar
  75. Powell, C.Ll. 1977 Mycorrhizas in hill country soils. III. Effect of inoculation on clover growth in unsterile soils.New Zealand Journal of Agricultural Research 20, 343–348.Google Scholar
  76. Powell, C.Ll. 1982 Selection of efficient VA mycorrhizal fungi.Plant and Soil 68, 3–9.Google Scholar
  77. Powell, C.Ll. 1984 Field inoculation with VA mycorrhizal fungi. InVA Mycorrhiza, ed. Powell, C.Ll. & Bagyaraj, D. pp. 205–222. Boca Raton, Florida: CRC Press.Google Scholar
  78. Rangeley, A., Daft, M.J. &Newbould, P. 1982 The inoculation of white clover with mycorrhiza fungi in unsterile hill soils.New Phytologist 92, 89–102.Google Scholar
  79. Redente, E.F. &Reeves, F.B. 1981 Interactions between vesicular-arbuscular mycorrhiza andRhizobium and their effect on sweetvetch growth.Soil Science 132, 410–415.Google Scholar
  80. Ross, J.P. 1971 Effect of phosphate fertilization on yield of mycorrhizal and nonmycorrhizal soybeans.Phytopathology 61, 1400–1403.Google Scholar
  81. Ross, J.P. 1972 Influence ofEndogone mycorrhiza onPhytophthora rot of soybean.Phytopathology 62, 896–897.Google Scholar
  82. Ross, J.P. &Gilliam, J.W. 1973 Effect ofEndogone mycorrhiza on phosphorus uptake by soybeans from inorganic phosphates.Soil Science Society of America Proceedings 37, 237–239.Google Scholar
  83. Ross, J.P. &Harper, J.A. 1970 Effect ofEndogone mycorrhiza on soybean yields.Phytopathology 60, 1552–1556.Google Scholar
  84. Ross, J.P. &Ruttencutter, R. 1977 Population dynamics of two vesicular-arbuscular endomycorrhizal fungi and the role of hyperparasitic fungi.Phytopathology 67, 490–496.Google Scholar
  85. Safir, G.R., Boyer, J.S. &Gerdemann, J.W. 1972 Nutrient status and mycorrhizal enhancement of water transport in soybean.Plant Physiology 49, 700–703.Google Scholar
  86. Sanders, F.E. 1975 The effect of foliar-applied phosphate on the mycorrhizal infections of onion roots. InEndomycorrhizas, ed. Sanders, F.E., Mosse, B. & Tinker, P.B. pp. 261–276. London: Academic Press.Google Scholar
  87. Sanders, F.E. &Tinker, P.B. 1973 Phosphate flow into mycorrhizal roots.Pesticide Science 4 385–395.Google Scholar
  88. Schenck, N.C. 1982 (Editor):Methods and Principles of Mycorrhizal Research. St. Paul, Minn.: American Phytopathological Society.Google Scholar
  89. Schenck, N.C. &Hinson, K. 1973 Response of nodulating and nonnodulating soybeans to a species ofEndogone mycorrhiza.Agronomy Journal 65, 849–850.Google Scholar
  90. Schenck, N.C. & Kellam, M.K. 1978 The influence of vesicular-arbuscular mycorrhizae on disease development. Bulletin 798, University of Florida Agricultural Experiment Station.Google Scholar
  91. Schenck, N.C., Kinloch, R.A. &Dickson, D.W. 1975 Interaction of endomycorrhizal fungi and root-knot nematode on soybean. InEndomycorrhizas, ed. Sanders, F.E., Mosse, B. & Tinker, P.B. pp. 607–617. London: Academic Press.Google Scholar
  92. Schenck, N.C. &Smith, G.S. 1982 Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures.New Phytologist 92, 193–201.Google Scholar
  93. Smith, S.E. &Bowen, G.D. 1979 Soil temperature, mycorrhizal infection and nodulation ofMedicago trunculata andTrifolium subterraneum.Soil Biology and Biochemistry 11, 469–473.Google Scholar
  94. Smith, S.E. &Daft, M.J. 1977 Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-nycorrhizalMedicago sativa.Australian Journal of Plant Physiology 4, 403–413.Google Scholar
  95. Smith, S.E., Nicholas, D.J.D. &Smith, F.A. 1979 Effect of early mycorrhizal infection on nodulation and nitrogen fixation inTrifolium subterraneum L.Australian Journal of Plant Physiology 6, 305–316.Google Scholar
  96. Smith, S.E., Nicholas, D.J.D. &Smith, F.A. 1979 Effect of early mycorrhizal infection on nodulation and nitrogen fixation inTrifolium subterraneum L.Australian Journal of Plant Physiology 6, 305–316.Google Scholar
  97. Sparling, G.P. &Tinker, P.B. Mycorrhizal infection in Pennine grassland. III. Effects of mycorrhizal infection on the growth of white clover.Journal of Applied Ecology 15, 959–964.Google Scholar
  98. Stribley, D.P. &Read, D.J. 1976 The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture.New Phytologist 77, 63–72.Google Scholar
  99. Strzemska, J. 1975 Mycorrhiza in farm crops grown in monoculture. InEndomycorrhizas, ed.Sanders, F.E., Mosse, B. &Tinker, P.B. pp. 527–535. London: Academic Press.Google Scholar
  100. Sutton, J.C. 1973 Development of vesicular-arbuscular mycorrhizae in crop plants.Canadian Journal of Botany 51, 2487–2493.Google Scholar
  101. Trappe, J.M. 1982 Synoptic keys to the genera and species of zygomycetous mycorrhizal fungi.Phytopathology 72, 1102–1108.Google Scholar
  102. Trinick, M.J. 1977 Vesicular-arbuscular infection and soil phosphorus utilization inLupinus spp.New Phytologist 78, 297–304.Google Scholar
  103. Waidyanatha, U.P. de S., Yogaratnam, N. &Ariyaratne, W.A. 1979 Mycorrhizal infection on growth and nitrogen fixation ofPueraria andStylosanthes and uptake of phosphorus from two rock phosphates.New Phytologist 82, 147–152.Google Scholar
  104. Walker, N.A. &Smith, S.E. 1984 The quantitative study of mycorrhizal infection. II. The relation of rate of infection and speed of fungal growth to propagule density, the mean length of the infection unit and the limiting value of the fraction of the root infected.New Phytologist 96, 55–69.Google Scholar
  105. Wang, S.R. &Hayman, D.S. 1982 Effect of nitrogen on mycorrhizal infection.Rothamsted Report for 1981, Part 1, p. 211.Google Scholar

Copyright information

© Oxford University Press 1986

Authors and Affiliations

  • D. S. Hayman
    • 1
  1. 1.Rothamsted Experimental StationHarpendenUK

Personalised recommendations