Advertisement

Applied Scientific Research

, Volume 52, Issue 4, pp 309–329 | Cite as

On predicting particle-laden turbulent flows

  • S. Elghobashi
Article

Abstract

The paper provides an overview of the challenges and progress associated with the task of numerically predicting particle-laden turbulent flows. The review covers the mathematical methods based on turbulence closure models as well as direct numerical simulation (DNS). In addition, the statistical (pdf) approach in deriving the dispersed-phase transport equations is discussed. The review is restricted to incompressible, isothermal flows without phase change or particle-particle collision. Suggestions are made for improving closure modelling of some important correlations.

Keywords

Phase Change Mathematical Method Transport Equation Direct Numerical Simulation Closure Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andresen, E., Statistical approach to continuum models for turbulent gas-particle flows. Ph.D. Dissertation, Technical University of Denmark (1990).Google Scholar
  2. 2.
    Berlemont, A., Desjonqueres, P. and Gouesbet, G., Particle Lagrangian simulation in turbulent flows.Int. J. Multiphase Flow 16 (1990) 19–34.Google Scholar
  3. 3.
    Buyevich, Yu. A., Statistical hydromechanics of disperse. Part 2: Solution of the kinetic equation for suspended particles.J. Fluid Mech. 52 (1972) 345–355.Google Scholar
  4. 4.
    Chao, B. T., Turbulent transport behavior of small particles in dilute suspension.Österr. Ing. Arch. 18 (1964) 7.Google Scholar
  5. 5.
    Chen, S., Doolen, G. D., Kraichnan, R. H. and She, Z. S., On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence.Phys. Fluids A5 (1993) 458–463.Google Scholar
  6. 6.
    Crowe, C. T., Chung, J. N. and Trout, T. R., Particle mixing in free shear flows.Prog. Energy Combust. Sci. 14 (1988) 171–194.Google Scholar
  7. 7.
    Csanady, G. T., Turbulent diffusion of heavy particles in the atmosphere.J. Atm. Sci. 20 (1963) 201–208.Google Scholar
  8. 8.
    Elghobashi, S. E., Particle-laden turbulent flows: direct simulation and closure models.Appl. Sci. Res. 48 (1991) 301–314.Google Scholar
  9. 9.
    Elghobashi, S. E. and Abou Arab, T. W., A two-equation turbulence model for two-phase flows.Phys. Fluids 26 (1983) 931–938.Google Scholar
  10. 10.
    Elghobashi, S. E., Abou Arab, T. W., Rizk, M. and Mostafa, A., Prediction of the particle-laden jet with a two-equation turbulence model.Int. J. Multiphase Flow 10 (1984) 697.Google Scholar
  11. 11.
    Elghobashi, S. E. and Truesdell, G. C., Direct simulation of particle dispersion in a decaying isotropic turbulence.Seventh Symposium on Turbulent Shear Flows, Stanford University (1989).Google Scholar
  12. 12.
    Elghobashi, S. E. and Truesdell, G. C., Direct simulation of particle dispersion in grid turbulence and homogeneous shear flows.Bull. Am. Phys. Soc. 34 (1989) 2311.Google Scholar
  13. 13.
    Elghobashi, S. E. and Truesdell, G. C., Direct simulation of particle dispersion in decaying isotropic turbulence.J. Fluid Mech. 242 (1992) 655–700.Google Scholar
  14. 14.
    Elghobashi, S. E. and Truesdell, G. C., On the two-way interaction between homogeneous turbulence and dispersed solid particles, part 1: turbulence modification.Phys. Fluids A5 (1993) 1790–1801.Google Scholar
  15. 15.
    Gosman, A. D. and Ioanides, E., Aspects of computer simulation of liquid-fuelled combustors.AIAA 19th Aerospace Sciences Meeting, St. Louis, MO, Paper No. 81-0323 (1981).Google Scholar
  16. 16.
    Hwang, G. J. and Shen, H. H., Modeling the solid-phase stress in a fluid-solid mixture.Int. J. Multiphase Flow 15 (1989) 257–268.Google Scholar
  17. 17.
    Kim, I., Elghobashi, S. and Sirignano, W., Three dimensional flow interactions between a cylindrical vortex tube and a spherical particle.J. Fluid Mech. (submitted, 1993).Google Scholar
  18. 18.
    Kim, I., Elghobashi, S. and Sirignano, W., Three dimensional flow over two spheres placed side by side.J. Fluid Mech. 246 (1993) 465–488.Google Scholar
  19. 19.
    Lopez de Bertodano, M., Lee, S.-J., Lahey, R. T., Jr. and Drew, D. A., The prediction of two-phase turbulence and phase distribution phenomena using a Reynolds stress model.J. Fluids Eng. 112 (1990) 107–113.Google Scholar
  20. 20.
    MacInnes, J. M. and Bracco, F. V., Stochastic particle dispersion and the tracer-particle limit.Phys. Fluids A4 (1992) 2809–2824.Google Scholar
  21. 21.
    Marble, F. E., Dynamics of gas containing small solid particles.Proceedings of the 5th AGARD Symposium, Combustion and Propulsion, Pergamon, New York (1963) pp. 175–215.Google Scholar
  22. 22.
    Maxey, M. R., The equation of motion for a small rigid sphere in a nonuniform or unsteady flow.ASME-Fluids Eng. Div. 166 (1993) 57–62.Google Scholar
  23. 23.
    Maxey, M. R. and Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow.Phys. Fluids 26 (1983) 883–889.Google Scholar
  24. 24.
    McLaughlin, J. B., Aerosol particle deposition in numerically simulated channel flow.Phys. Fluids A1 (1989) 1211–1224.Google Scholar
  25. 25.
    McLaughlin, J. B., Inertial migration of a small sphere in linear shear flow.J. Fluid Mech. 224 (1991) 261–274.Google Scholar
  26. 26.
    Reeks, M. W., On a kinetic equation for the transport of particles in turbulent flows.Phys. Fluids A3 (1991) 446–456.Google Scholar
  27. 27.
    Reeks, M. W., On the continuum equations for dispersed particles in nonuniform flows.Phys. Fluids A4 (1992) 1290–1303.Google Scholar
  28. 28.
    Reeks, M. W., On the constitutive relations for dispersed particles in nonuniform flows. I: Dispersion in a simple shear flow.Phys. Fluids A5 (1993) 750–763.Google Scholar
  29. 29.
    Riley, J. J. and Patterson, G. S., Jr., Diffusion experiments with numerically integrated isotropic turbulence.Phys. Fluids 17 (1974) 292.Google Scholar
  30. 30.
    Saffman, P. G., The life on a small sphere in a slow shear flow.J. Fluid Mech. 22 (1965) 385–400.Google Scholar
  31. 31.
    Saffman, P. G., The lift on a small sphere in a slow shear flow — corrigendum.J. Fluid Mech. 31 (1968) 624.Google Scholar
  32. 32.
    Snyder, W. H. and Lumley, J. L., Some measurements of particle velocity autocorrelation functions in a turbulent flow.J. Fluid Mech. 48 (1971) 41.Google Scholar
  33. 33.
    Squires, K. D. and Eaton, J. K., Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence.J. Fluid Mech. 226 (1991) 1–35.Google Scholar
  34. 34.
    Taylor, G. I., Diffusion by continuous movement.Proc. Lond. Math. Soc. A20 (1921) 196.Google Scholar
  35. 35.
    Yudine, M. I., Physical considerations on heavy-particle diffusion.Adv. Geophys. 6 (1959) 185–191.Google Scholar
  36. 36.
    Yuu, S., Yasukouchi, N., Hirosawa, Y. and Jotaki, T., Particle turbulent diffusion in a dust-laden round jet.J. AIChE 24 (1978) 509–519.Google Scholar
  37. 37.
    Zhou, Q. and Leschziner, M. A., A time-correlated stochastic model for particle dispersion in anisotropic turbulence.Eight Symposium on Turbulent Shear Flows 1 (1991) 1031–1036.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • S. Elghobashi
    • 1
  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations