Advertisement

Molecular and Cellular Biochemistry

, Volume 125, Issue 2, pp 105–114 | Cite as

Subcellular distribution and properties of rabbit liver aminoacyl-tRNA synthetases under myocardial ischemia

  • Leonid L. Ivanov
  • Zenius Martinkus
  • Ol'ga V. Kharchenko
  • Sana Sara
  • Leonardas Lukoshevichius
  • Antanas Prashkevichius
  • Anna V. El'skaya
Article

Abstract

Subcellular distribution of aminoacyl-tRNA synthetase activities has been studied in normal rabbit liver and under experimental myocardial ischemia (EMI). An increase in the activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal supernatants from rabbit liver has been determined 12 hr after EMI. Gel chromatography of the postribosomal supernatant on Sepharose 6B shows that aminoacyl-tRNA synthetase activities are distributed among the fractions with Mr 1.82×106, 0.84×106 (high-Mr aminoacyl-tRNA synthetase complexes) and 0.12–0.35×106. In the case of EMI aminoacyl-tRNA synthetase activities are partly redistributed from the 1.82×106 complex into the 0.84×106 complex. The catalytic properties of both free and complex leucyl-tRNA synthetases have been compared. KM for all the substrates are the values of the same order in norm and under EMI. A decrease in some aminoacyl-tRNA synthetase activities associated with polyribosomes has been observed 12 hr after EMI. The interaction of aminoacyl-tRNA synthetases with polyribosomes stimulates the catalytic activity of some enzymes and protects them from heat inactivationin vitro. It is assumed that the changes in association of aminoacyl-tRNA synthetases with high-Mr complexes and compartmentalization of these enzymes on polyribosomes may be related to the alteration of protein biosynthesis under myocardial ischemia.

Key words

aminoacyl-tRNA synthetase high-Mr complex protein biosynthesis rabbit liver myocardial ischemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dang CV, Dang CV: Multienzyme complex of aminoacyl-tRNA synthetases: an essence of being eukaryotic. Biochem J 239: 249–255, 1986Google Scholar
  2. 2.
    Kisselev LL, Favorova OO, Lavrik OI: Protein biosynthesis from amino acid to aminoacyl-tRNA (USSR). Nauka, Moskva, 1984, pp 408Google Scholar
  3. 3.
    Alzhanova AT, Fedorov AN, Ovchinnikov LP: Aminoacyl-tRNA synthetases of rabbit reticulocytes with and without the ability to bind high-Mr RNA. FEBS Lett 144: 149–153, 1982Google Scholar
  4. 4.
    Fedorov AN, Alzhanova AT, Ovchinnikov LP: Association of eukaryotic aminoacyl-tRNA synthetases with polyribosomes. Biokhimia (USSR) 50: 1639–1645, 1985Google Scholar
  5. 5.
    Spirin AS, Ajtkhozhin MA: Informosomes and polyribosome-associated proteins in eukaryotes. Trends Biochem Sci 10: 162–165, 1985Google Scholar
  6. 6.
    Cirakoglu B, Mirande M, Waller J-P: A model for the structural organization of aminoacyl-tRNA synthetases in mammalian cells. FEBS Lett 183: 185–190, 1985Google Scholar
  7. 7.
    Del Monte U, Neri Cini G, Capaccioli S, Caldini R, Chevanne M, Perego R: Studies on particulate and soluble forms of aminoacyl-tRNA synthetases from rat liver and hepatomas. Med Biol Environ 9: 375–379, 1981Google Scholar
  8. 8.
    Klekamp M, Pahuski E, Hampel A: Reformation of leucyl-tRNA synthetase complexes in revertants from CHO mutant tsHl. Somat Cell Genet 7: 725–735, 1981Google Scholar
  9. 9.
    Del Monte U, Capaccioli S, Neri Cini G, Perego R, Caldini R, Chevanne M: Effects of liver regeneration on tRNA contents and aminoacyl-tRNA synthetase activities and sedimentation patterns. Biochem J 236: 163–169, 1986Google Scholar
  10. 10.
    Takahashi R, Mori N, Goto S: Alteration of aminoacyl tRNA synthetases with age: accumulation of heat-labile enzyme molecules in rat liver, kidney and brain. Mech Ageing Dev 33: 67–75, 1985Google Scholar
  11. 11.
    Takahashi R, Goto S: Age-associated accumulation of heat-labile aminoacyl-tRNA synthetases in mice and rats. Arch Gerontol Geriatr 6: 73–82, 1987Google Scholar
  12. 12.
    Enger MD, Ritter PO, Hampel AE: Altered aminoacyl-tRNA synthetase complexes in G1-arrested Chinese hamster ovary cells. Biochemistry 17: 2435–2438, 1978Google Scholar
  13. 13.
    Hampel AE, Ritter PO, Enger MD: A physically altered leucyl-tRNA synthetase complex in a CHO cell mutant. Nature 276: 844–845, 1978Google Scholar
  14. 14.
    Maskoliunas RK, Liekis AV, Kovalenko MI: Protein biosynthesis in the cell-free systems from rabbit myocardium under total ischemia. Biopolimery i Kletka (USSR) 5: 84–86, 1989Google Scholar
  15. 15.
    Liekis AV, Lukoševičius LJ, Kovalenko MI, Buldakova OV: Study of the molecular mechanisms of hypoalbuminemia under experimental myocardial infarction. Biopolimery i Kletka (USSR) 1: 322–327, 1985Google Scholar
  16. 16.
    Liekis AV, Mašanauskas TK, Ivanov LL, Lukoševičius LJ, Kunakh VA, Kovalenko MI, Praškevičius AK, El'skaya AV: Effect of cell culture of Polyscias filicifolia Bailey biomass on protein biosynthesis in rabbit liver. Khim-Pharm Zh (USSR) 22: 970–973, 1988Google Scholar
  17. 17.
    Lukoševičius LJ, Rodovičius HA, Kovalenko MI, Pivoriunaite II, Praškevičius AK, El'skaya AV: tRNA and aminoacyl-tRNA synthetases from rabbit liver under experimental myocardial infarction. Voprosy Med Khimii (USSR) 29: 65–69, 1983Google Scholar
  18. 18.
    Ivanov LL, Lukoševičius LJ, Kovalenko MI, Bagdonaite OD, Liekis AV, Praškevičius AK, El'skaya AV: Studies of aminoacyl-tRNA synthetase complexes in rabbit liver under experimental myocardium infarction. Ukr Biokhim Zh (USSR) 55: 368–371, 1983Google Scholar
  19. 19.
    Ivanov LL, Tamulevičius A-AJ, Lukoševičius LJ, Kovalenko MI, Rodovičius HA, Praškevičius AK: Aminoacyl-tRNA synthetases and their high molecular weight complexes during experimental ischemia of the myocardium. Molek Biol (USSR) 18: 1326–1329, 1984Google Scholar
  20. 20.
    Toleikis A, Džeja P, Praškevičius A, Jasaitis A: Mitochondrial functions in ischemic myocardium. J Mol Cell Cardiol 11: 55–76, 1979Google Scholar
  21. 21.
    Brungraber EF: A simplified procedure for the preparation of ‘soluble’ RNA from rat liver. Biochem Biophys Res Commun 8: 1–3, 1962Google Scholar
  22. 22.
    Choo AHF, Logan DM: Aminoacyl-tRNA synthetases from rat liver: optimized assay conditions and kinetic properties. Mol Cell Biochem 17: 31–38, 1977Google Scholar
  23. 23.
    Ivanov LL, Martinkus ZP, Liekis AV, Lukoševičius LJ, Praškevičius AK: Distribution of the aminoacyl-tRNA synthetase activity in rabbit liver cells during protein synthesis damage under experimental myocardial infarction. Ukr Biokhim Zh (USSR) 61: 34–38, 1989Google Scholar
  24. 24.
    Ivanov LL, Stapulionis RR, Lukoševičius LJ: Purification and properties of leucyl-tRNA synthetase from the mammalian tissues. Biopolimery i Kletka (USSR) 1: 154–156, 1985Google Scholar
  25. 25.
    Martin RG, Ames BN: A method for determining the sedimentation behavior of enzymes: applications to protein mixtures. J Biol Chem 236: 1372–1379, 1961Google Scholar
  26. 26.
    Chuang HJK, Bell EF: Use a thermal inactivation technique to obtain binding constants for the Escherichia coli valyl-tRNA synthetase. Arch Biochem Biophys 152: 502–514, 1972Google Scholar
  27. 27.
    Wettstein FD, Staechelin T, Noll H: Ribosomal aggregate engaged in protein synthesis characterization of the ergosomes. Nature 197: 430–437, 1963Google Scholar
  28. 28.
    Pailliez J-P, Waller J-P: Phenylalanyl-tRNA synthetases from sheep liver and yeast. Correlation between net charge and binding to ribosomes. J Biol Chem 259: 15491–15496, 1984Google Scholar
  29. 29.
    Tscherne JC, Weinstein IB, Lanks KW, Gersten NB, Cantor CR: Phenylalanyl transfer ribonucleic acid synthetase activity associated with rat liver ribosomes and microsomes. Biochemistry 12: 3859–3865, 1973Google Scholar
  30. 30.
    Graf H: Interaction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Biochim Biophys Acta 425: 175–184, 1976Google Scholar
  31. 31.
    Carias J-R, Mouricout M, Quintard B, Thomes J-C, Julien R: Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ. Inactivation and ribosome effects. Eur J Biochem 87: 583–590, 1978Google Scholar
  32. 32.
    Cirakoglu B, Waller J-P: Multiple forms of arginyl- and lysyl-tRNA synthetases in rat liver: a re-evaluation. Biochim Biophys Acta 829: 173–179, 1985Google Scholar
  33. 33.
    Vellekamp G, Sihag RK, Deutscher MP: Comparison of the complexed and free forms of rat liver arginyl-tRNA synthetase and origin of the free form. J Biol Chem 260: 9843–9847, 1985Google Scholar
  34. 34.
    Deutscher MP: The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol 99: 373–377, 1984Google Scholar
  35. 35.
    Pendergast AM, Venema RC, Traugh JA: Regulation of phosphorylation of aminoacyl-tRNA synthetases in the high molecular weight core complex in reticulocytes. J Biol Chem 262: 5939–5942, 1987Google Scholar
  36. 36.
    Krause E-G, Bartel S, Lindenau K-F, Kensicki C, Knauer B, Warnke H, Wollenberger A: Myocardial cyclic nucleotide levels after coronary artery ligation. Abstr. 8th World Congress of Cardiology. Tokyo, 1979, pp 240–244Google Scholar
  37. 37.
    Jakubowski H: A role for protein-protein interactions in the maintenance of active forms of aminoacyl-tRNA synthetases. FEBS Lett 103: 71–76, 1979Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Leonid L. Ivanov
    • 1
  • Zenius Martinkus
    • 1
  • Ol'ga V. Kharchenko
    • 2
  • Sana Sara
    • 2
  • Leonardas Lukoshevichius
    • 1
  • Antanas Prashkevichius
    • 1
  • Anna V. El'skaya
    • 2
  1. 1.Department of BiochemistryKaunas Medical AcademyKaunasLithuania
  2. 2.Institute of Molecular Biology and GeneticsUkrainian Academy of SciencesKievUkraine

Personalised recommendations