Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

ε-solutions in vector minimization problems


This paper presents some properties of ε-solutions for vector minimization problems where the function to be optimized takes its values in the Euclidean space ℝp. The results obtained generalize the classical ones for exact Pareto solutions.

This is a preview of subscription content, log in to check access.


  1. 1.

    Tanino, T., andSawaragi, Y.,Conjugate Maps and Duality in Multiobjective Optimization, Journal of Optimization Theory and Applications, Vol. 31, No. 4, 1980.

  2. 2.

    Kutateladze, S. S.,Convex ε-Programming, Soviet Mathematics Doklady, Vol. 20, No. 2, 1979.

  3. 3.

    Loridan, P.,Necessary Conditions for ε-Optimality, Mathematical Programming Study 19, 1982.

  4. 4.

    Strodiot, J. J., Nguyen, V. H., andHeukenes, N.,ε-Optimal Solutions in Nondifferentiable Convex Programming and Some Related Questions, Facultés Universitaires de Namur, Namur, Belgium, Report No. 80/12, 1980.

  5. 5.

    Ben-Tal, A.,Characterization of Pareto and Lexicographic Optimal Solutions, Springer-Verlag, New York, New York, 1980.

  6. 6.

    Fogelman-Soulie, F., andMoulin, H.,La Convexité dans les Mathématiques de la Décision, Hermann, Paris, France, 1979.

  7. 7.

    Ekeland, I.,On the Variational Principle, Journal of Mathematical Analysis and Applications, Vol. 47, No. 2, 1974.

  8. 8.

    Ekeland, I., andTemam, R.,Analyse Convexe et Problèmes Variationnels, Dunod, Paris, France, 1974.

  9. 9.

    Clarke, F. H.,A New Approach to Lagrange Multipliers, Mathematics of Operations Research, Vol. 1, No. 2, 1976.

Download references

Author information

Additional information

Communicated by G. Leitmann

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loridan, P. ε-solutions in vector minimization problems. J Optim Theory Appl 43, 265–276 (1984).

Download citation

Key Words

  • ε-efficient points
  • vector minimization problems
  • ε-Pareto solutions
  • Ekeland's variational principle