Chattering arcs and chattering controls

  • C. Marchal
Survey Paper


There are two different meanings of the wordchattering in control theory and optimization theory. Chattering arcs of the first kind are related to the notion of relaxation of the control (i.e., convexization of the maneuverability domain). Some sufficient conditions of equivalence of these notions are defined. Chattering arcs of the second kind appear before and after some optimal singular arcs, for instance, the intermediate thrust arcs of the optimal transfer problem of astrodynamics. The simplest examples of chattering arcs of the second kind appear in Fuller's problem, two cases of which are examined in detail. The conditions of chattering of the second kind are analyzed; they are related to the Kelley-Contensou optimality test of singular extremals, also known asGeneralized Legendre-Clebsch conditions; they lead to general solutions and not only to solutions restricted to particular terminal conditions; thus, the phenomenon of chattering is very important (fortunately, these solutions can generally be approximated very closely by simple piecewise continuous controls). Finally, some special and complex cases appear, some examples of which are analyzed.


Differential System Terminal Condition Singular Solution Geometrical Progression Switching Instant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warga, J.,Necessary Conditions for Minimum in Relaxed Variational Problems, Journal of Mathematical Analysis and Applications, Vol. 4, No. 2, 1962.Google Scholar
  2. 2.
    Contensou, P.,Note sur la Cinématique Générale du Mobile Dirigé, Communications à l'Association Technique Maritime et Aéronautique, Vol. 45, No. 836, 1946.Google Scholar
  3. 3.
    Contensou, P.,Étude Théorique des Trajectoires Optimales dans un Champ de Gravitation. Application au Cas d'un Centre d'Attraction Unique, Astronautica Acta, Vol. 8, Nos. 2–3, 1962.Google Scholar
  4. 4.
    Fuller, A. T.,An Optimum Non-Linear Control System, Paper Presented at the IFAC Congress, Moscow, USSR, 1961.Google Scholar
  5. 5.
    Fuller, A. T.,Further Study of an Optimum Nonlinear Control System, Journal of Electronics and Control, Vol. 17, No. 3, 1964.Google Scholar
  6. 6.
    Johansen, D. E.,Solution of a Linear Mean Square Estimation Problem When Process Statistics Are Undefined, Paper Presented at the Joint Automatic Control Conference, Troy, New York, 1965.Google Scholar
  7. 7.
    Robbins, H. M.,Optimality of Intermediate-Thrust Arcs of Rocket Trajectories, AIAA Journal, Vol. 3, No. 6, 1965.Google Scholar
  8. 8.
    Robbins, H. M.,Optimal Rocket Trajectories with Subarcs of Intermediate Thrust, Paper Presented at the 17th International Astronautical Congress, Madrid, Spain, 1966.Google Scholar
  9. 9.
    Kelley, H. J., Kopp, R. E., andMoyer, H. G.,Singular Extremals, Topics in Optimization, Edited by G. Leitmann, Academic Press, New York, 1967.Google Scholar
  10. 10.
    Marchal, C., Marec, J. P., andWinn, C. B.,Synthèse des Résultats Analytiques sur les Transferts Optimaux entre Orbites Képlériennes, Paper Presented at the 18th International Astronautical Congress, Belgrade, Yugoslavia, 1967.Google Scholar
  11. 11.
    Marchal, C.,Généralisation Tridimensionnelle et Étude de l'Optimalité des Arcs à Poussée Intermédiaire de Lawden (dans un Champ Newtonien), La Recherche Aérospatiale, No. 123, 1968.Google Scholar
  12. 12.
    Dixon, J. F.,Minimum-Fuel Rocket Trajectories Involving Intermediate Thrust Arcs, Paper Presented at the 22nd International Astronautical Congress, Brussel, Belgium, 1971.Google Scholar
  13. 13.
    Marchal, C.,Theoretical Research in Deterministic Optimization, ONERA, Publication No. 139, 1971.Google Scholar
  14. 14.
    Lawden, D. F.,Intermediate Thrust Arcs in a Gravitationnal Field, Astronautica Acta, Vol. 8, Nos. 2–3, 1962.Google Scholar
  15. 15.
    Miele, A.,The Calculus of Variations in Applied Aerodynamics and Flight Mechanics, Optimization Techniques, Edited by G. Leitmann, Academic Press, New York, 1962.Google Scholar
  16. 16.
    Breakwell, J. V.,Minimum Impulse Transfer, Progress in Astronautics and Aeronautics: Celestial Mechanics and Astrodynamics, Edited by V. Szebehely, Academic Press, New York, 1964.Google Scholar
  17. 17.
    Fraeijs De Veubeke, B.,Canonical Transformations and the Thrust-Coast-Thrust Optimal Transfer Problem, Astronautica Acta, Vol. 11, No. 4, 1965.Google Scholar
  18. 18.
    Leitmann, G.,An Introduction to Optimal Control, McGraw-Hill Book Company, New York, 1966.zbMATHGoogle Scholar
  19. 19.
    Contensou, P.,Conditions d'Optimalité pour les Domaines de Manoeuvrabilité à Frontiére Semi-Affine, Paper Presented at the Second Colloquium on Methods of Optimization, Novosibirsk, USSR, 1969.Google Scholar
  20. 20.
    Marec, J. P.,Utilisation des Équations aux Variations dans l'Étude des Trajectoires Spatiales Optimales; Application aux Solutions Singulières Réticentes, Paper Presented at the Symposium on Optimization, Nice, France, 1970.Google Scholar
  21. 21.
    Archenti, A., andMarec, J. P.,Transferts Orbitaux: Intégration Numérique des Arcs Singuliers Alternatifs de Contensou, La Recherche Aérospatiale, No. 6, 1970.Google Scholar
  22. 22.
    Archenti, A., andMarchal, C.,Intégration Numérique des Arcs à Poussée Intermédiaire de Lawden et Étude de Leur Optimalité (dans un Champ Newtonien Central), Paper Presented at the 21st International Astronautical Congress, Constance, Germany, 1970.Google Scholar
  23. 23.
    Archenti, A., andMarec, J. P.,On the Optimality of Contensou's Singular Alternating Arcs in the Optimal Transfer Problem, Journal of Optimization Theory and Applications, Vol. 8, No. 1, 1971.Google Scholar
  24. 24.
    Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., andMishchenko, E. F.,The Mathematical Theory of Optimal Processes, John Wiley and Sons (Interscience Publishers), New York, 1962.zbMATHGoogle Scholar
  25. 25.
    Marchal, C.,The Bi-Canonical Systems, Paper Presented at the Fourth Colloquium on Techniques of Optimization, Los Angeles, California, 1971.Google Scholar
  26. 26.
    Hermes, H.,The Generalized Differential Equation x ∈ R(t, x), Advances in Mathematics, Vol. 4, No. 2, 1970.Google Scholar
  27. 27.
    Favard, J.,Cours d'Analyse de l'École Polytechnique, ler Semestre, lère Partie, Gauthier Villars, Paris, France, 1954.Google Scholar
  28. 28.
    Halmos, P. R.,Measure Theory, D. Van Nostrand Company, Princeton, New Jersey, 1966.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • C. Marchal
    • 1
  1. 1.Office National d'Études et de Recherches Aérospatiales (ONERA)ChâtillonFrance

Personalised recommendations