Advertisement

Theoretical and Applied Genetics

, Volume 38, Issue 8, pp 355–360 | Cite as

Genotype-environment interaction for awn development in isogenic lines of barley

  • Calvin O. Qualset
Article

Summary

Awn length of four isogenic lines of barley differing by two genes for awn development (A andB) and their short iinkage blocks was evaluated at a wide range of plant densities (0.002 to 3.345 m2/plant) for two years. Awn development was reduced at high plant density. The quarter-awned genotype (aaBB) became phenotypically awnless (aabb) at high plant density. Similar results were obtained each year and the genotype x plant density effect was the major portion of the genotype-environment interaction variance. Additive (α A , α B ) and additive x additive (α AB ) gene effects were computed for each plant density for lateral and central floret awn length. For lateral awns α AB was not affected, but α A and α B increased with decreased plant density. In contrast, for central awns α A and α AB decreased and α B increased with decreased plant density.

Central floret awns measured at each spike node showed that high plant density reduced awn development most in the lower half of the spike. This is the zone of most rapid awn differentiation and since culm elongation and spike growth rates were greatly increased by high plant density, it was suggested that rapid growth invoked a stress on awn development and differentially altered the expression ofA andB.

Keywords

Plant Density Isogenic Line High Plant Density Sich Eine Spike Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

An 4 isogenen Gerstenlinien, die sich durch zwei Gene für Grannenbildung (A undB) und entsprechende kurze Kopplungsblocks unterscheiden, wurde zwei Jahre lang die Länge der Grannen bei verschiedener Standdichte (0,002 bis 3,345 m2 je Pflanze) untersucht. Bei dichtem Bestand ergab sich eine Beeinträchtigung der Grannenbildung, der viertelbegrannte Genotyp (aaBB) wurde phänotypisch grannenlos (aabb). Die Ergebnisse stimmten in beiden Jahren überein, der Effekt Genotyp x Standdichte hatte den Hauptanteil an der Interaktionsvarianz Genotyp: Umwelt. Additive (α A , α B ) und additive x additive (α AB ) Genwirkungen wurden bei jeder Standdichte für die Grannenlänge der Seiten-und Mittelährchen errechnet. Bei den seitlichen Grannen wurde α AB nicht beeinflußt, aber α A und α B erhöhten sich mit abnehmender Standdichte. Im Gegensatz dazu gingen bei den mittleren Grannen α A und α AB zurück, während für α B bei abnehmender Standdichte ein Ansteigen festzustellen war.

Messungen der mittleren Grannen jeder Ähre zeigten, daß hohe standdichte der Pflanzen die Grannenbildung am meisten in der unteren Hälfte der Ähre reduzierte. Das ist die Zone, in der sich die Grannen am schnellsten differenzieren, und da die Halm- und Ährenwachstumsraten durch hohe Standdichte stark gesteigert wurden, scheint das schnelle Wachstum auf die Grannenentwicklung hemmend einzuwirken und die Manifestierung vonA undB unterschiedlich abzuändern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Allard, R. W., andA. D. Bradshaw: The implications of genotype-environment interactions in applied plant breeding. Crop Sci.4, 503–508 (1964).Google Scholar
  2. 2.
    Aspinall, D., P. B. Nicholls, andL. H. May: The effects of soil moisture stress on the growth of barley. I. Vegetative development and grain yield. Aust. J. Agric. Res. 15, 729–745 (1964).Google Scholar
  3. 3.
    Bonnett, O. T.: Inflorescences of maize, wheat, rye, barley, and oats: their initiation and development. Illinois Agric. Exp. Stat. Bul. 721 (1966).Google Scholar
  4. 4.
    Carmer, S. G., andR. D. Seif: Calculation of orthogonal coefficients when treatments are unequally replicated and/or unequally spaced. Agron. J.55, 387–389 (1963).Google Scholar
  5. 5.
    Engledow, F. L.: Inheritance in barley. III. The awn and lateral floret: fluctuation: a linkage: multiple allelomorphs. J. Genet. 14, 49–87 (1924).Google Scholar
  6. 6.
    Fasoulas, A. C., andR. W. Allard: Nonallelic gene interactions in the inheritance of quantitative characters in barley. Genetics47, 899–907 (1962).Google Scholar
  7. 7.
    Gardner, C. O.: Estimates of genetic parameters in cross-fertilizing plants and their implications in plant breeding. In: Statistical Genetics and Plant Breeding. Nat. Acad. Sci.-Nat. Res. Council Publ. 982, 225–252 (1963).Google Scholar
  8. 8.
    Grundbacher, F. J.: The physiological function of the cereal awn. Botan. Rev.29, 366–381 (1963).Google Scholar
  9. 9.
    Huber, J. A.: Vererbungsstudien an Gerstenkreuzungen. II. Zur Genetik der Gerstenähre. Z. f. Pflanzenzüchtung16, 394–464 (1931).Google Scholar
  10. 10.
    Matzinger, D. F.: Experimental estimates of genetic parameters and their applications in self-fertilizing plants. In: Statistical Genetics and Plant Breeding, Nat. Acad. Sci. — Nat. Res Council Publ.982, 253–279 (1963).Google Scholar
  11. 11.
    Myler, J. L.: Awn inheritance in barley. J. Agric. Res.65, 405–412 (1942).Google Scholar
  12. 12.
    Nicholls, P. B., andL. H. May: Studies on the growth of the barley apex. I. Interrelationships between primordium formation, apex length, and spikelet development. Aust. J. Biol. Sci.16, 561–571 (1963).Google Scholar
  13. 13.
    Nilan, R. A.: The cytology and genetics of barley, 1951 to 1962. Mono, Suppl. 3, Washington State Univ.32, 1–278 (1964).Google Scholar
  14. 14.
    Qualset, C. O., andC. W. Schaller: Aleurone color and quantitative genetic variability in isogenic lines of barley. Can. J. Genet. Cytol.8, 584 to 591 (1966).Google Scholar
  15. 15.
    Qualset, C. O., C. W. Schaller, andJ. C. Williams: Performance of isogenic lines of barley as influenced by awn length, linkage blocks and environment. Crop. Sci.5, 489–494 (1965).Google Scholar
  16. 16.
    Schulte, H.-K.: Untersuchungen zur Genetik und zur physiologischen Funktion der Granne bei der Gerste. Z. f. Pflanzenzüchtung34, 157–196 (1955).Google Scholar
  17. 17.
    Smith, L.: Cytology and genetics of barley. Botan. Rev.17, 1–51, 133–202, 285–355 (1951).Google Scholar
  18. 18.
    Stebbins, G. L., andE. Yagil: The morphogenetic effects of the hooded gene in barley. I. The course of development in hooded and awned genotypes. Genetics54, 727–741 (1966).Google Scholar
  19. 19.
    Wijewantha, R. T., andG. L. Stebbins: Developmental and biochemical effects of theagropyroides mutation in barley. Genetics50, 65–80 (1964).Google Scholar
  20. 20.
    Williams, R. F., andR. E. Shapter: A comparative study of growth and nutrition in barley and rye as affected by low-water treatment. Aust. J. Biol. Sci.8, 435–466 (1955).Google Scholar
  21. 21.
    Woodward, R. W., andD. C. Rasmusson: Hood and awn development in barley determined by two gene pairs. Agron. J.49, 92–94 (1957).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Calvin O. Qualset
    • 1
  1. 1.Department of AgronomyUniversity of CaliforniaDavis

Personalised recommendations