Origins of life

, Volume 14, Issue 1–4, pp 291–300 | Cite as

Evolution of biocatalysis 1. Possible pre-genetic-code RNA catalysts which are their own replicase

  • C. M. Visser


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Inoue, T. and Orgel, L.E., Science219, 859–862 (1983).Google Scholar
  2. (2).
    Visser, C.M., Origins of Life12, 165–179 (1982).Google Scholar
  3. (3).
    White, H.B. III, The Pyridine Nucleotide Coenzymes, Everse, J., Anderson, B.M. and You, K.-S., eds. Academic Press, New York, 1982 pp 1–17.Google Scholar
  4. (4).
    Wolfenden, R. and Williams, R., J. Amer. Chem. Soc.105, 1028–1031 (1983).Google Scholar
  5. (5).
    Dyrssen, D., Ekberg, S., Liem, D.H., Acta. Chem. Scand.18, 135–143 (1964).Google Scholar
  6. (6).
    Oró, J., Holzer, G., Rao, M. and Tornabene, T.G., Origin of Life, Wolman, Y., ed., Reidel, Dordrecht 1981, pp 313–322.Google Scholar
  7. (7).
    Ford, W.E. and Tollin, G., Photochem. Photobiol.35, 809–819 (1982).Google Scholar
  8. (8).
    Cheddar, G. and Tollin, G., Photobiochem. Phtobiophys.2, 255–62 (1981).Google Scholar
  9. (9).
    Katz, J.J., Shipman, L.L., Cotton, T.M. and Janson, T.R., The Porphyrins, Dolphin, D., ed., Academic Press, New York, 1978, vol V, 401–458.Google Scholar
  10. (10).
    Fong, F.K. and Galloway, L., J. Amer. Chem. Soc.100, 3594–3596 (1978).Google Scholar
  11. (11).
    Galloway, L., Roettger, J., Fruge, D.R. and Fong, F.K., J.Amer.Chem.Soc.100, 4635–4638 (1978).Google Scholar
  12. (12).
    Recently it has been found that in chloroplasts a heme prosthetic group is involved in O2 production by way of a catalase-like reaction (13,14).Google Scholar
  13. (13).
    Barber, J., Nakatani, H.Y. and Mansfield, R., Isr. J. Chem.21, 243–249 (1981).Google Scholar
  14. (14).
    Nakatani, H.Y., Mansfield, R.W., Whitford, D. and Barber, J., Photobiochem. Photobiophys.4, 121–129 (1982).Google Scholar
  15. (15).
    Buchler, J.W., Angew. Chem. Int. Ed.17, 407–423 (1978).Google Scholar
  16. (16).
    Chin, D.-H., Balch, A.L. and LaMar, G.N., J.Amer.Chem.Soc.,102, 4344–4350 (1980).Google Scholar
  17. (17).
    Visser, C.M., Bioorg. Chem.9, 411–422 (1980).Google Scholar
  18. (18).
    As can be concluded from heme model chemistry (15,16) the expected reaction cycles of schemes II and III can in fact be more intricate than depicted here because of the probable intermediacy of μ-oxo-bisheme a (III) complexes. This does however not affect the overall stoichiometry of the cycles.Google Scholar
  19. (19).
    Kuhn, H., Angew. Chem.84, 838–865 (1972).Google Scholar
  20. (20).
    Kuhn, H. and Waser, J., Angew. Chem. Int. Ed.20, 500 (1981).Google Scholar
  21. (21).
    Eigen, M. and Winkler-Oswatitsch, Naturwissenschaften68, 217–228; 282–292 (1981).Google Scholar
  22. (22).
    Kuhn, H., Waser, J., Nature298, 585–586 (1982).Google Scholar
  23. (23).
    Inoue, T. and Orgel, L.E., J. Mol. Biol.162, 201–217 (1982)Google Scholar
  24. (24).
    An alternative abiogenic pathway of such a “gene doubling” can be envisaged that runs via hairpin formation. When a randomly formed oligonucleotide folds back on itself it could serve as template for its own chain lengthening. In that manner also palindromes are formed that have however some irregularities at the places of the hairpin loops. Such a mechanism could start with an alternating hexanucleotide and lead to similar palindromic 24-mers. However, the chance for accidental formation of an alternating hexanucleotide is considerably smaller (one in thirtytwo).Google Scholar
  25. (25).
    Wang, A.H.-J., Quigley, G.J., Kolpak, F.J., Marel, G. van der, Boom, J.H. van and Rich, A., Science211, 171–176 (1981).Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • C. M. Visser
    • 1
  1. 1.SebaldeburenThe Netherlands

Personalised recommendations