Bacillus thuringiensis and microbial control of flies

  • Gunnel Carlberg
Giam VII Papers

Summary

Some strains ofBacillus thuringiensis (B.t.) primarily the H serotype 1, produce in the surrounding medium a nucleotide, called thuringiensin, which is structurally related to ATP. Thuringiensin is a larvicide, affecting the moulting and pupation of certain species of the orders Lepidoptera, Diptera, Hymenoptera, Coleoptera and Orthoptera. The highest susceptibility is found in Diptera. Muscabac (Farmos Group Ltd.) is aB.t. preparation, registered in Finland for fly control in livestock buildings and compost toilets. It hasB.t. spores and thuringiensin as active components. Contrary to theB.t. products, based on the proteinaceous endotoxin and used for control of lepidopterous pests, Muscabac has a long-lasting effect due to the growth of the bacterium, and thus continued production of thuringiensin in the treated larval growth sites. Use of chemical insecticides has created a control problem because of the development of resistance. The possibility of fly resistance toB.t. has been tested, rearing 70 generations of the fruit flyDrosophila melanogaster in increasing concentrations of thuringiensin. No true resistance developed, neither was there cross resistance between chemicals and exotoxin. The efficacy of Muscabac for fly control has also been tested in compost and pit latrines in Dar es Salaam, Tanzania, with very promising results.

Résumé

Certaines souches deBacillus thuringiensis (B.t.), notamment celles appartenant au sérotype H1, excrétent un nucléotide, appelé thuringiensine, qui est structurellement apparenté à l'ATP. La thuringiensine est un larvicide, agissant sur la mue et la pupaison de certaines éspèces de Lépidoptères, Hyménoptères, Coléoptères et Orthoptères. Les Diptères sont les insectes les plus sensibles. Le Muscabac (Farmos Group Ltd) est une préparation deB.t. brévetée en Finland pour la lutte contre les mouches dans les étables et les toilettes. Ses composantes actives sont constituées par un mélange de spores et de thuringiensine. Contrairement aux produits contenantB.t., lesquels ont pour base l'endotoxine protéique et sont utilisés pour la lutte contre les Lépidoptères nuisibles, Muscabac a une action persistante de longue durée, due à la croissance des bactéries et à leur production de thuringiensine dans les biotopes où se développent les larves. La lutte avec les insecticides expose à des problèmes de résistance acquise. La possibilité d'une résistance des mouches àB.t. a été étudiée en élevant 70 générations de mouches de fruits,Drosophila melanogaster, dans des concentrations croissantes de thuringiensine. On n'a pas constaté de résistance réelle, ni de résistance croisée aux produits chimiques et à l'endotoxine. L'efficacité du Muscabac pour la lutte contre les mouches dans des latrines et des fosses d'aisance a été testée à Dar-es-Salam et les résultats obtenus ont été prometteurs.

Resumen

Algunas cepas deBacillus thuringiensis, en especial la cepa H serotipo 1, excretan en el medio en el cual se desarrollan un nucleótido denominado thuringiensina, estructuralmente relacionado con el ATP. La thuringiensina tiene propiedades larvicidas que afectan a la muda y a la pupación de ciertas especies de los órdenes: Lepidoptera, Diptera, Hymenoptera, Coleoptera y Orthoptera; siendo los dípteros los que presentan mayor susceptibilidad. Muscabac (Farmos Group Ltd.) es un preparado a base deB.t., registrado en Finlandia, para el control de moscas en edificios utilizados por el ganado y en plantes de compostaje. Este preparado contiene esporas deB.t. y thuringiensina como ingredientes activos. Al contrario de los compuestos deB.t. a base de endotoxinas proteícas utilizados en la lucha contra plagas de lepidópteros, Muscabac tiene un efecto residual en los lugares de desarrollo larval tratados debido a la producción continuada de thuringiensina por las bacterias en crecimiento. La utilización de insecticidas químicos ha originado problemas de control debido al desarrollo de resistencias. La posibilidad de aparición de resistencia de las moscas aB.t. ha sido estudiada criando 70 generaciones sucesivas de la moscaDrosophila melanogaster en concentraciones crecientes de thuringiensina. No se observó el desarrollo de ninguna resistencia verdadera ni tampoco de resistencias cruzadas entre compuestos químicos y la exotoxina. La eficacia de Muscabac para el control de moscas se ha experimentado así mismo en fosas de compostaje y letrinas en Dar-es-Salam (Tanzania) con resultados prometedores.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, K., Ohba, M., Padua, L. E. & Tantichodok, A. 1980 Insecticidal toxins produced byBacillus thuringiensis. Microbial Utilization of Renewable Resources. Vol. 1. JSPS-NRCT Seminar, Osaka, Japan, 49–53.Google Scholar
  2. de Barjac, H. 1978 Une nouvelle variété deBacillus thuringiensis très toxique pour les moustiques:B. thuringiensis var.israelensis sérotype 14.Comptes rendus de l'Academie des Sciences Ser. D,286, 797–800.Google Scholar
  3. de Barjac, H. 1981 Identification of H-serotypes ofBacillus thuringiensis. InMicrobial Control of Pests and Plant Diseases 1970–1980, ed. Burges, H. D. pp. 35–43. London: Academic Press.Google Scholar
  4. Buchanan, R. E. &Gibbons, N. E. (eds) 1974Bergey's Manual of Determinative Bacteriology. Baltimore: Williams and Wilkins Co.Google Scholar
  5. Burgerjon, A. (1970) Effects physiologiques et mutagènes sur les insectes de la toxine thermostable deBacillus thuringiensis Berliner.Annales de Parasitologie 48, 835–844.Google Scholar
  6. Carlberg, G. 1973 Biological effects of the thermostable β-exotoxin produced by different serotypes ofBacillus thuringiensis.Reports from Department of Microbiology, University of Helsinki 6/1973, 1–90.Google Scholar
  7. Carlberg, G., Kihamia, C. M. &Minjas, J. 1985 Microbial control of flies in latrines in Dar es Salaam with aBacillus thuringiensis (serotype 1) preparation, Muscabac.MIRCEN Journal of Applied Microbiology and Biotechnology 1, 33–44.Google Scholar
  8. Faust, R. M., Spizizen, J., Gage, V. &Travers, R. S. 1979 Extrachromosomal DNA inBacillus thuringiensis var.kurstaki, var.sotto, and inBacillus popilliae.Journal of Invertebrate Pathology 33, 233–238.Google Scholar
  9. Goldberg, L. J. &Margalit, J. 1977 A bacterial spore demonstrating rapid larvidical activity againstAnopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti andCulex pipiens.Mosquito News 37, 355–358.Google Scholar
  10. Holmberg, A., Sievänen, R. &Carlberg, G. 1980 Fermentation ofBacillus thuringiensis—a process analysis study.Biotechnology and Bioengineering 22, 1707–1724.Google Scholar
  11. Krieg, A. 1970In vitro determination ofBacillus thuringiensis, Bacillus cereus and related bacilli.Journal of Invertebrate Pathology 15, 313–320.Google Scholar
  12. Kähkönen, M., Gripenberg, U., Carlberg, G., Meretoja, T. &Sorsa, M. 1979 Mutagenicity ofBacillus thuringiensis exotoxin III. Sister chromatid exchange in ratsin vivo.Hereditas,91, 1–3.Google Scholar
  13. Linnainmaa, K., Sorsa, M., Carlberg, G., Gripenberg, U. &Meretoja, T. 1977 Mutagenicity ofBacillus thuringiensis exotoxin. II. Submammalian tests.Hereditas 85, 113–122.Google Scholar
  14. McConnell, E. &Richards, A. G. 1959 The production byBacillus thuringiensis Berliner of a heat-stable substance toxic for insects.Canadian Journal of Microbiology 5, 161–168.Google Scholar
  15. Meretoja, T. &Carlberg, G. 1977 The effect ofBacillus thuringiensis and of cell-free supernatants of some bacteria on the mitotic activity of human lymphocytes.FEMS Microbiology Letters 2, 109–111.Google Scholar
  16. Meretoja, T., Carlberg, G., Gripenberg, U., Linnainmaa, K. &Sorsa, M. 1977 Mutagenicity ofBacillus thuringiensis exotoxin. I. Mammalian tests.Hereditas 85, 105–112.Google Scholar
  17. Mikkola, A. R., Carlberg, G., Vaara, T. &Gyllenberg, H. G. 1982 Comparison of inclusions in differentBacillus thuringiensis strains. An electron microscope study.FEMS Microbiology Letters 13, 401–408.Google Scholar
  18. Ohba, M. &Aizawa, K. 1978 Serological identification ofBacillus thuringiensis and related bacteria isolated in Japan.Journal of Invertebrate Pathology 31, 303–309.Google Scholar
  19. Padua, L. E., Ohba, M. &Aizawa, K. 1980 The isolates ofBacillus thuringiensis serotype 10 with a highly preferential toxicity to mosquito larvae.Journal of Invertebrate Pathology 36, 180–186.Google Scholar
  20. Schnepf, H. E. &Whiteley, H. R. 1981 Cloning and expression of theBacillus thuringiensis crystal protein gene inEscherichia coli.Proceedings of the National Academy of Sciences of the USA 78, 2893–2897.Google Scholar
  21. Sebesta, K., Horska, K. &Vankova, J. 1969 Isolation and properties ofde nova RNA synthesis by the insecticidal exotoxin ofBacillus thuringiensis var.gelechiae.Collection of Czechoslovakian Chemical Communications 34, 891–898.Google Scholar
  22. Sebesta, K., Farkas, J., Horska, K. &Vankova, J. 1981 Thuringiensin, the eta-exotoxinBacillus thuringiensis. InMicrobial Control of Pests and Plant Diseases 1970–1980, ed. Burges, H. D. pp. 249–281. London: Academic Press.Google Scholar
  23. Seki, T., Chung, C-K., Mikami, H. &Oshima, Y. 1978 Deoxyribonucleic acid homology and taxonomy of the genusBacillus.International Journal of Systematic Bacteriology 28, 182–189.Google Scholar
  24. Tyrell, D. J., Bulla, L. A. Jr. &Davidson, L. I. 1981 Characterization of spore coat proteins ofBacillus thuringiensis andBacillus cereus.Comparative Biochemical Physiology 70, 535–539.Google Scholar

Copyright information

© Oxford University Press 1986

Authors and Affiliations

  • Gunnel Carlberg
    • 1
  1. 1.Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations