Advertisement

Anaerobic digestion of native cellulosic wastes

  • A. Bhadra
  • J. M. Scharer
  • M. Moo-Young
Review Paper

Summary

Anaerobic digestion is an extensively used bioconversion process to produce gaseous fuel from native lignocellulosic materials. It consists essentially of two steps; acidogenesis and methanogenesis. Most conventional anaerobic digesters are single-stage systems. Animal waste, agricultural residues, sewage sludge and industrial effluents are suitable as feedstock. Biogas productivity in single stage digestion ranges from 0.5–1.5 m3/m3/day at mesophilic (20–40°C) and 1.0–2.5 m3/m3/day at thermophilic (40–60°C) temperatures, and about 30–50% of the volatile solids are converted to biogas. In two-stage systems, acidogenesis is separated from methanogenesis, which improves cellulose hydrolysis and process efficiency. Recent advances in digester design include the introduction of the upflow anaerobic sludge blanket, and fluidized-bed and fixed-film bioreactors, which are operated at much higher loading. Process efficiency can be as high as 97%. An overview of these technologies is presented.

Keywords

Fermentation Sludge Biogas Sewage Sludge Anaerobic Digestion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La fermentation anaérobie est un procédé de bio-conversion très utilisé pour produire des carburants gazeux à partir de ligno-cellulose. Elle comporte essentiellement deux étapes: acidogenèse et méthanogenèse. La plupart des digesteurs usuels sont des systèmes à un seul étage. Les déchets animaux, les résidus agricoles, les boues d'épandage et certains effluents industriels sont des substrats appropriés. Dans les fermentations à un seul étage, la productivité en bio-gaz varie entre 0,5 et 1,5 m3 par m3 et par jour pour les températures mésophiles (20–40°C) et de 1,0 à 2,5 pour les températures thermophiles (40–50°C); d'autre part environ 30 à 50% des solides volatils sont convertis en bio-gaz. Dans les systèmes à deux étages, l'acidogenèse est séparée de la méthanogenèse, ce qui améliore l'hydrolyse de la cellulose et l'efficacité du procédé. Les progrès récents concernant la structure des fermenteurs comprennent la circulation du dépôt anaérobie et la réalisation de bioréacteurs à lit fluidisé et à film-fixé, ce qui permet d'opérer avec des charges trés supérieures. L'efficacité peut atteindre 97%. Un aperçu de ces nouvelles technologies est présenté dans l'article.

Resumen

La digestión anaeróbica es un proceso de bioconversión muy utilizado para producir gas combustible a partir de materiales de tipo lignocelulósico. El proceso consta esencialmente de dos etapas acidogénesis y metaogénesis. La mayoría de los digestores de tipo convencional son de una sola etapa. Como material de partida pueden utilizarse residuos dé ganado, agrícolas, lodos de depuradoras y efluentes industriales. La producción de biogás en un digestor de una sola etapa va desde 0.5–1.5 m3/m3 día cuando el proceso transcurre a temperaturas mesófilas hasta 1.0–2.5 m3/m3 día cuando lo hace a temperaturas termófilas, transformándose entre un 30 y un 50% de los sólidos volátiles en biogás. En los sistemas con dos etapas la acidogénesis se separa de la metanogénesis con lo cual se mejora la hidrólisis de la celulosa y por lo tanto la eficiencia del proceso. Entre los recientes adelantos en el diseño de digestores cabe incluir la introducción de una manta de flujo ascendente para fangos anaeróbicos y bioreactores con camas fluidas y de lámina fija que pueden usarse con cargas mayores. La eficiencia del proceso puede llegar entonces hasta 97%. En este trabajo se pasa revista a todas estas nuevas tecnologías.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccay, R.A. &Hashimoto, A.G. 1984 Acidogenic and methanogenic fermentation of causticized straw.Biotechnology & Bioengineering 26, 885–891.Google Scholar
  2. Bhadra, A., Scharer, J.M. & Moo-Young, M. 1985 A technoeconomic evaluation of bioprocesses for upgrading some cellulosic waste sludges.Waterloo Centre for Process Development Report, University of Waterloo, Canada.Google Scholar
  3. Boening, P.H. &Larsen, V.F. 1982 Anaerobic fluidized bed whey treatment.Biotechnology & Bioengineering 24, 2539–2556.Google Scholar
  4. Bryant, M.P. 1973 Nutritional requirements of predominant rumen celluloytic bacteria.Federation Proceedings 32, 1809–1813.PubMedGoogle Scholar
  5. Cheeseman, P., Tomswood, A. &Wolfe, R.S. 1972 Isolation and properties of a fluorescent compound, Factor420, fromMethanobacterium strain M.O.H.Journal of Bacteriology 112, 527–531.PubMedGoogle Scholar
  6. Converse, J.C. 1975 Dairy manure degradation under mesophilic and thermophilic temperatures.ASAE Paper No. 75-4540, American Society of Agricultural Engineers, St. Joseph, Michigan.Google Scholar
  7. Converse, J.C. 1977 Performance of a large size anaerobic digester for poultry manure.Paper No. 77-0451, American Society of Agricultural Engineers, St. Joseph, Michigan.Google Scholar
  8. Datta, R. 1981a Acidogenic fermentation of corn stover.Biotechnology & Bioengineering 23, 61–67.Google Scholar
  9. Datta, R. 1981b Acidogenic fermentation of lignocellulose-acid yield and conversion of components.Biotechnology & Bioengineering 23, 2167–2170.Google Scholar
  10. Datta, R. 1981c Production of organic acid esters from biomass — novel processes and concepts.Biotechnology Symposium Series No. 11, 521–532.Google Scholar
  11. Fujita, M., Scharer, J.M. &Moo-Young, M. 1980 Effect of corn stover addition on the anaerobic digestion of swine manure.Agricultural Wastes 2, 177–184.Google Scholar
  12. Fong, W. 1973 Methane production from animal wastes by anaerobic decomposition. M.Sc. Thesis, University of Manitoba, Winnipeg, Man., Canada.Google Scholar
  13. Gramms, L.D., Polkowski, L.B. &Witzel, S.A. 1971 Anaerobic digestion of farm animal wastes (dairy bull, swine and poultry).Transactions of American Society of Agricultural Engineers 14, 1, 7–13.Google Scholar
  14. Hashimoto, A.G. 1978 Thermophilic anaerobic fermentation of beef cattle residue. Presented at the symposium on Biotechnology in Energy Production and Conservation, Gallinburg, Tennessee, U.S.A.Google Scholar
  15. Hawkes, D., Horton, R. &Stafford, D.A. 1976 The application of anaerobic digestion to producing methane gas and fertilizer from farm waste.Process Biochemistry 11, 32–36.Google Scholar
  16. Jeffrey, E.A., Blackman, W.C. & Ricketts, R.L. 1963 Aerobic and anaerobic digestion characteristics of livestock waste.University of Missouri Engineering Experiment Station Bulletin No. 57.Google Scholar
  17. Jewell, W.J. 1976 Bioconversion of agricultural wastes for pollution control and energy conservation.Final report, ERDA-NSF-741222A01, Cornell University, Ithaca, New York, U.S.A.Google Scholar
  18. Khan, A.W., Wall, D. &Van den Berg, L. 1981 Fermentative conversion of cellulose to acetic acid and cellulolytic enzyme production by a bacterial mixed culture obtained from sewage sludge.Applied & Environmental Microbiology 41, 1214–1218.Google Scholar
  19. Khan, A.W., Miller, S.S. &Murray, W.D. 1983 Development of a two-phase combination fermenter for the conversion of cellulose to methane.Biotechnology & Bioengineering 25, 1571–1579.Google Scholar
  20. Koster, I.W. 1984 Liquefaction and acidogenesis of tomatoes in an anaerobic two-phase solid waste treatment system.Agricultural Wastes 11, 241–252.Google Scholar
  21. Lapp, H.M. 1978 A study of the feasibility of using methane gas from animal wastes for energy purposes.Agriculture Canada Technical Report Contract No. 0SW5-0527.Google Scholar
  22. Lettinga, G., Van Velsen, A.F.M., Holma, S.W., De Zeeuw, W. &Klapwigk, A. 1980 Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment.Biotechnology & Bioengineering 22, 699–734.Google Scholar
  23. Lettinga, G., Roersma, R. &Grin, P. 1983 Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor.Biotechnology & Bioengineering 25, 1701–1723.Google Scholar
  24. Levy, P.F., Sanderson, J.E. & Wise, D.L. 1981 Development of a process for production of liquid alkane fuel from biomass. 2nd World Congress of Chemical Engineers, Montreal, Quebec.Google Scholar
  25. Patelunas, G.M. 1977 Biological energy recovery using dairy cow wastes.Journal of the Environmental Engineering Division. American Society of Civil Engineers.Google Scholar
  26. Pigg, D.L. 1977 Commercial size anaerobic digester performance with dairy manure.ASAE Paper No. 77-4055. American Society of Agricultural Engineers, St. Joseph, Michigan.Google Scholar
  27. Reese, E.T., Mandells, M. &Weiss, A.H. 1972 Cellulose as a novel energy source. InAdvances in Biochemical Engineering, Vol. 2. ed. Ghose, T.K., Fiechter, A. & Blakebrough, N. pp. 1991–2000, Berlin: Springer Verlag.Google Scholar
  28. Scharer, J.M. &Moo-Young, M. 1979 Methane generation by anaerobic digestion of cellulose-containing wastes. InAdvances in Biochemical Engineering, Vol. 11. ed. Ghose, T.K., Fiechter, A. & Blakebrough, N. pp. 85–101, Berlin: Springer Verlag.Google Scholar
  29. Schmid, L.A. &Lipper, R.I. 1969 Swine wastes: characterization and anaerobic digestion. InConference on Agricultural Waste Management, pp. 50–57, Cornell University, U.S.A.Google Scholar
  30. Stadtman, T.C. 1967 Methane fermentation.Annual Review of Microbiology 21, 121–142.PubMedGoogle Scholar
  31. Summers, R. &Bousfield, S. 1976 Practical aspects of anaerobic digestion.Process Biochemistry 11, 3–6.Google Scholar
  32. Taiganides, E.P. 1962 Anaerobic digestion of hog wastes.Journal of Agricultural Engineering Research 70, 329–341.Google Scholar
  33. Thomas, K. & Evison, L.M. 1977 A new approach to anaerobic digestion: process control to produce effluents suitable for SCP recovery. In International research symposium on new processes of wastewater treatment and recovery. London, England.Google Scholar
  34. Tzeng, S.F., Wolfe, R.S. &Bryant, M.P. 1975a Factor 420-dependent pyridine nucleotide-linked hydrogenase system ofMethanobacterium ruminantium.Journal of Bacteriology 121, 184–191.PubMedGoogle Scholar
  35. Tzeng, S.F., Bryant, M.P. &Wolfe, R.S. 1975b Factor 420-dependent pyridine nucleotide-linked formate metabolism ofMethanobacterium ruminantium.Journal of Bacteriology 121, 192–196.PubMedGoogle Scholar
  36. van Velsen, A.F.M. 1977 Anaerobic digestion of piggery waste. 1. The influence of detention time and manure concentration.Netherland Journal of Agricultural Science 25, 151–159.Google Scholar
  37. van den Berg, L. &Kennedy, K.J. 1981 Support materials for stationary fixed film reactors for high-rate methanogenic fermentations.Biotechnology Letters 3, 165–170.Google Scholar
  38. van den Berg, L. &Kennedy, K.J. 1982 Comparison of intermittent and continuous loading of stationary fixed film reactors for methane production from wastes.Journal of Chemical Technology and Biotechnology 32, 427–432.Google Scholar
  39. Zoetmeyer, R.J., Vanden, H.J.C. &Cohen, A. 1982 pH influence on acidogenic dissimilation of glucose in an anaerobic digester.Water Research 16, 303–311.Google Scholar

Copyright information

© Oxford University Press 1986

Authors and Affiliations

  • A. Bhadra
    • 1
  • J. M. Scharer
    • 1
  • M. Moo-Young
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations