Parasitology Research

, Volume 75, Issue 2, pp 88–97 | Cite as

Influence ofBlastocrithidia triatomae (Trypanosomatidae) on the reduviid bugTriatoma infestans: alterations in the Malpighian tubules

  • G. A. Schaub
  • Antonia Schnitker
Original Investigations

Abstract

To investigate the cellular basis of our recent observation that the trypanosomeBlastocrithidia triatomae disturbs excretion inTriatoma infestans, we compared the morphology and ultrastructure of Malpighian tubules in infected and noninfected bugs. Tubules of bugs infected 3–4 months before dissection did not show any morphological alterations in either the upper or lower regions. In fifth instars with a long lasting infection (9–10 months) and a correspondingly retarded larval development, the tracheal system supplying the Malpighian tubules was reduced and alterations were conspicuous in the upper region, where the tubules were slightly widened, sometimes having parts with conspicuous swellings. The cells were filled with white concretions and a strong autofluorescence was evident by fluorescence microscopy. Transmission electron microscopy demonstrated an increase in the number of these concretions, even after short infection periods. In the extremely swollen parts of the tubules there was a reduction in basal cell interdigitations, mitochondria, and microvilli.B. triatomae (but also gramnegative bacteria) occurred only in these swollen parts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer PG (1984) Electron microscopical studies onTrypanosoma cruzi and other microorganisms in the reduviid vector. Mem Inst Oswaldo Cruz [Suppl] 79:25–32Google Scholar
  2. Böker CA, Schaub GA (1984) Scanning electron microscopic studies ofTrypanosoma cruzi in the rectum of its vectorTriatoma infestans. Z Parasitenkd 70:459–469PubMedGoogle Scholar
  3. Bradley TJ (1983) Functional design of microvilli in the Malpighian tubules of the insectRhodnius prolixus. J Cell Sci 60:117–135PubMedGoogle Scholar
  4. Bradley TJ, Sauerman DM, Nayar JK (1984) Early cellular responses in the Malpighian tubules of the mosquitoAedes taeniorhynchus to infection withDirofilaria immitis (Nematoda). J Parasitol 70:82–88PubMedGoogle Scholar
  5. Brown BE (1982) The form and function of metal-containing ‘granules’ in invertebrate tissues. Biol Rev 57:621–667Google Scholar
  6. Collatz K-G, Collatz S (1981) Age dependent ultrastructural changes in different organs of the Mecopteran flyPanorpa vulgaris. Exp Gerontol 16:183–193PubMedGoogle Scholar
  7. Eichelberg D (1979) Feinstruktur und experimentelle Beeinflußbarkeit Malpighischer Gefäße bei larven der SalzfliegeEphydra riparia (Diptera: Ephydridae). Entomol Gen 5:301–315Google Scholar
  8. Green LFB (1979) Regional specialization in the Malpighian tubules of the New Zealand glow-wormArachnocampa luminosa (Diptera: Mycetophilidae). The structure and function of type I and type II cells. Tissue Cell 11:673–702PubMedGoogle Scholar
  9. Haberkorn A (1976) Beobachtungen anBlastocrithidia triatomae Cerisola et al. 1971 ausTriatoma infestans. Z Parasitenkd 50:194–195Google Scholar
  10. Hevert F (1984) Stofftransporte am Malpighiefäß—ein Diktat der Struktur? Verh Dtsch Zool Ges 77:105–115Google Scholar
  11. Lange CE (1987) Histopathology in the Malpighian tubules ofDichroplus elongatus (Orthoptera: Acrididae) infected withPerezia dichroplusae (Microspora: Pereziidae). J Invertebr Pathol 50:146–150Google Scholar
  12. Maddrell SHP (1971) The mechanisms of insect excretory systems. Adv Insect Physiol 8:199–331Google Scholar
  13. Maddrell SHP (1980) Bioassay of diuretic hormone inRhodnius. In: Miller TA (ed) Neurohormonal techniques in insects. Springer-Verlag, Berlin, pp 81–90Google Scholar
  14. Mello MLS, Dolder H (1977) Fine structure of the Malpighian tubes in the blood-sucking insect,Triatoma infestans Klug. Protoplasma 93:275–288Google Scholar
  15. Mello MLS, Dolder H (1980) Aspectos ultraestruturais de tubos de Malpighi de ninfas jovens deTriatoma infestans Klug. Cienc Cult 32:903–907Google Scholar
  16. Mello MLS, Vidal BDE C (1985) Microspectrofluorometry of the naturally fluorescent substances of the Malpighian tubules ofTriatoma infestans andPanstrongylus megistus. Acta Histochem Cytochem 18:365–373Google Scholar
  17. Molyneux DH, Croft SL, Lavin DR (1981) Studies on the hostparasite relationships ofLeptomonas species (Protozoa: Kinetoplastida) of Siphonaptera. J Nat Hist 15:395–406Google Scholar
  18. Palmer CA, Wittrock DD, Christensen BM (1986) Ultrastructure of Malpighian tubules ofAedes aegypti infected withDirofilaria immitis. J Invertebr Pathol 48:310–317PubMedGoogle Scholar
  19. Reduth D, Schaub GA, Pudney M (1984) The cultivation ofBlastocrithidia triatomae (Trypanosomatidae) in a cell line of its hostTriatoma infestans (Reduviidae). Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt Orig Reihe A 258:383Google Scholar
  20. Ryerse JS (1979) Developmental changes in Malpighian tubule cell structure. Tissue Cell 11:533–551PubMedGoogle Scholar
  21. Schaub GA (1988) Developmental time and mortality in larvae of the reduviid bugsTriatoma infestans andRhodnius prolixus after coprophagic infection withBlastocrithidia triatomae (Trypanosomatidae). J Invertebr Pathol 51:23–31PubMedGoogle Scholar
  22. Schaub GA, Böker CA (1986) Scanning electron microscopic studies ofBlastocrithidia triatomae (Trypanosomatidae) in the rectum ofTriatoma infestans (Reduviidae). J Protozool 33:266–270Google Scholar
  23. Schaub GA, Jensen C (1985) Zur biologischen Bekämpfung einer der großen Tropenparasitosen, der Chagas-Krankheit, mit dem FlagellatenBlastocrithidia triatomae. Verh Dtsch Zool Ges 78:190Google Scholar
  24. Schaub GA, Schottelius J (1984) Identification of trypanosomes isolated from Reduviidae from North Chile. Z Parasitenkd 70:3–9PubMedGoogle Scholar
  25. Schlüter U, Holst H, Rönnau KC (1982) Ultrastructural changes in the gut and the Malpighian tubules ofEpilachna varivestis after application of the new antibiotic Nikkomycin involve an osmoregulatory defect. J Invertebr Pathol 39:362–372Google Scholar
  26. Schnitker A, Schaub GA, Maddrell SHP (1988) The influence ofBlastocrithidia triatomae (Trypanosomatidae) on the reduviid bugTriatoma infestans: in vivo and in vitro diuresis and production of diuretic hormone. Parasitology 96:9–17PubMedGoogle Scholar
  27. Sleytr UB (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int Rev Cytol 53:1–64PubMedGoogle Scholar
  28. Sohal RS (1974) Fine structure of the Malpighian tubules in the housefly,Musca domestica. Tissue Cell 6:719–728PubMedGoogle Scholar
  29. Sohal RS, Lamb RE (1979) Storage-excretion of metallic cations in the adult housefly,Musca domestica. J Insect Physiol 25:119–124Google Scholar
  30. Sohal RS, Peters PD, Hall TA (1976) Fine structure and X-ray microanalysis of mineralized concretions in the Malpighian tubules of the housefly,Musca domestica. Tissue Cell 8:447–458PubMedGoogle Scholar
  31. Watkins R (1971)Trypanosoma rangeli: effect on excretion inRhodnius prolixus. J Invertebr Pathol 17:67–71PubMedGoogle Scholar
  32. Wigglesworth VB, Salpeter MM (1962) Histology of the Malpighian tubules inRhodnius prolixus Stål (Hemiptera). J Insect Physiol 8:299–307Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. A. Schaub
    • 1
  • Antonia Schnitker
    • 1
  1. 1.Institut für Biologie I (Zoologie)Albert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations