Parasitology Research

, Volume 79, Issue 6, pp 492–496 | Cite as

Influence ofLeishmania infection on blood-meal digestion in the sandfliesPhlebotomus papatasi andP. langeroni

  • R. J. Dillon
  • R. P. Lane
Original Investigations


The presence of amastigote-initiated infections ofLeishmania major parasites caused a significant suppression in alkaline protease, trypsin and aminopeptidase activity during the first 30 h after ingestion of the infected bloodmeal inPhlebotomus papatasi, the natural vector ofL. major. Protease levels were significantly higher in infected flies after 72 h than in the control group, where digestion had ceased. Evidence for the suppression of protease activity in infectedP. langeroni, a sympatric but un-natural vector ofL. major, was less clear; there was no difference in alkaline protease activity between control and infected groups in the first 24 h. However, protease, trypsin and aminopeptidase activities were elevated after 72 h in infectedP. langeroni, indicating a delay in the time to the end of digestion and passage of the bloodmeal. The potential advantages for parasite development in suppressing protease activity and extending the period of bloodmeal digestion are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler S (1938) Factors determining the behaviour ofLeishmania sp. in sandflies. Harefuah 14:1–5Google Scholar
  2. Borovsky D, Schlein Y (1987) Trypsin and chymotrypsin-like enzymes of the sandflyPhlebotomus papatasi infected withLeishmanla and their possible role in vector competence. Med Vet Entomol 1:235–242Google Scholar
  3. Bouvier J, Schneider P, Etges R, Bordier C (1990) Peptide specificity of the membrane bound metalloprotease ofLeishmania. Biochemistry 29:10113–10119Google Scholar
  4. Briegel H (1975) Excretion of proteolytic enzymes byAedes aegypti after a blood meal. J Insect Physiol 21:1681–1684Google Scholar
  5. Davies CR, Cooper AM, Peacock C, Lane RP, Blackwell JM (1990) Expression of LPG and GP63 by different developmental stages ofLeishmania major in the sandflyPhlebotomus papatasi. Parasitology 101:337–343Google Scholar
  6. Dillon RJ, Lane RP (1993) Blood meal digestion in the midguts ofPhlebotomus papatasi andPhlebotomus langeroni. Med Vet Entomol (in press)Google Scholar
  7. Elnaiem DA, Ward RD, Young PE (1992) An ultrastructural study on the early development ofLeishmania chagasi (Kinetoplastida: Trypanosomatidae) in its vectorLutzomyia longipalpis (Diptera: Psychodidae). Ann Parasitol Hum Comp 67:3–8Google Scholar
  8. El Sattar SA, Shehata MG, El Sawaf BM (1991) The development ofLeishmania infantum inPhlebotomus langeroni Nitzulescu (Diptera: Psychodidae). Parassitologia 33 [Suppl 1]:199–204Google Scholar
  9. Feldmann AM, Billingsley PF, Savelkoul E (1990) Blood meal digestion by strains ofAnopheles stephensi Liston (Diptera: Culicidae) of differing susceptibility toPlasmodium falciparum. Parasitology 101:193–200Google Scholar
  10. Garcia ES, Gilliam FC (1980)Trypanosoma cruzi development is independent of protein digestion in the gut ofRhodnius prolixus. J Parasitol 66:1052–1053Google Scholar
  11. Gass RF, Yeates RA (1979) In vitro damage of cultured ookinetes ofPlasmodium gallinaceum by digestive proteinases from susceptibleAedes aegypti. Acta Trop (Basel) 36:243–252Google Scholar
  12. Gooding RH (1972) Digestive processes in haematophagous insects: 1. A literature review. Quaest Entomol 8:5–60Google Scholar
  13. Howard KM, Sayers G, Miles M (1987)Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance and infectivity. Exp Parasitol 64:147–156Google Scholar
  14. Imbuga MO, Osir EO, Labongo VL, Darji N, Otieno LH (1992a) Studies on tsetse midgut factors that induce differentiation of bloodstreamTrypanosoma brucei brucei in vitro. Parasitol Res 78:10–15Google Scholar
  15. Imbuga MO, Osir EO, Labongo VL (1992b) Inhibitory effect ofTrypanosoma brucei brucei onGlossina morsitans midgut trypsin in vitro. Parasitol Res 78:273–276Google Scholar
  16. Killick-Kendrick R (1987) Methods for the study of phlebotomine sandflies. In: Peters W, Killick-Kendrick R (eds) The leishmaniases in biology and medicine, vol 1. Academic Press, New York, pp 473–497Google Scholar
  17. Lang T, Warburg A, Sacks D, Croft S, Lane R, Blackwell JM (1991) Transmission and scanning EM-immunogold labelling ofLeishmania major lipophosphoglycan in the sandflyPhlebotomus papatasi. Eur J Cell Biol 55:362–372Google Scholar
  18. Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR (1990) Development ofLeishmania major inPhlebotomus duboscqi andSergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43:31–43Google Scholar
  19. Lehane MJ (1991) Biology of bloodsucking insects. Chapman and Hall, London, pp 79–110Google Scholar
  20. Molyneux DH, Killick-Kendrick R (1987) Morphology, ultrastructure and life cycles. In: Peters W, Killick-Kendrick K (eds) The leishmaniases in biology and medicine, vol 1. Academic Press, New York, pp 121–176Google Scholar
  21. Pimenta FP, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL (1992) Stage-specific adhesion ofLeishmania promastigotes to the sandfly midgut. Science 256:1812–1815Google Scholar
  22. Ponnadurai T, Billingsley PF, Rudin W (1988) Differential infectivity ofPlasmodium for mosquitoes. Parasitol Today 4:319–321Google Scholar
  23. Pupkis MF, Coombs GH (1984) Purification of proteolytic enzymes ofLeishmania mexicana mexicana amastigotes and promastigotes. J Gen Microbiol 130:2375–2383Google Scholar
  24. Sacks DL, Perkins PV (1985) Development of infective stageLeishmania promastigotes within Phlebotomine sandflies. Am J Trop Med Hyg 34:456–459Google Scholar
  25. Schlein Y, Schnur LF, Jacobson RL (1990) Released glycoconjugate of indigenousLeishmania major enhances survival of a foreignL. major inPhlebotomus papatasi. Trans R Soc Trop Med Hyg 84:353–355Google Scholar
  26. Schroeder LL, Pappas PW, Means GE (1981) Trypsin inactivation by intactHymenolepis diminuta (Cestoda): some characteristics of the inactivated enzyme. J Parasitol 67:378–385Google Scholar
  27. Turco SJ, Descoteaux A (1992) The lipophosphoglycan ofLeishmania parasites. Annu Rev Microbiol 46:65–94Google Scholar
  28. Warburg A, Hamada GS, Schlein Y, Shire D (1986) Scanning electron microscopy ofLeishmania major inPhlebotomus papatasi. Z Parasitenkd 72:423–431Google Scholar
  29. Yabu Y, Takayanagi T (1988) Trypsin stimulated transformation ofTrypanosoma brucei gambiense bloodstream forms to procyclic forms in vitro. Parasitol Res 74:501–506Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • R. J. Dillon
    • 1
  • R. P. Lane
    • 2
  1. 1.Department of Medical ParasitologyLondon School of Hygiene and Tropical MedicineLondonUK
  2. 2.Department of EntomologyThe Natural History MuseumLondonUK

Personalised recommendations