The conversion of straw into feed by basidiomycetes

  • F. Zadražil
Industrial Microbiology

Summary

  1. 1.

    The solid-state fermentation of straw byPleurotus cornucopiae, Pleurotus sp. Florida, Agrocybe aegerita, andStropbaria rugosoannulata at 22°, 25°, and 30°C during 0–120 days was examined.

     
  2. 2.

    During the first stage of fungal growth (saprophytic colonization), the quantity of water soluble substances, reducing sugars, and in vitro digestibility of the straw-fungal myeelium mixture decreased.

     
  3. 3.

    After 20 days, the amount of water soluble substances and reducing sugars increased. Temperature strongly influenced the rate of substrate decomposition, particularly with cultures ofPleurotus cornucopiae andStropharia rugosoannulata.

     
  4. 4.

    Of the fungal cultures examined,Pleurotus cornucopiae andStropharia rugosoannulata showed the highest rate of straw decomposition and released the greatest amount of metabolic energy from the straw.

     
  5. 5.

    The heat of combustion of decomposed substrate decreased due to increasing ash content and varying degree of metabolism of cellulose and lignin.

     
  6. 5.

    The in vitro digestibility of wheat straw was strongly influenced by incubation temperature and increased during fermentation byPleurotus species andStropharia rugosoannulata.

     
  7. 7.

    Agrocybe aegerita exhibited good properties for production of fruiting bodies, but this species was not satisfactory for the conversion of plant residues to feed.Stropharia rugosoannulata, however, increased the digestibility of straw by 31.6%.

     
  8. 8.

    Some technical possibilities for using fungi for upgrading waste straw to animal feed are discussed.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, A.J. (1973). J. Anim. Sci.36, 768–771Google Scholar
  2. Beckmann, E. (1979). Gesamtsitzung des Kaiser Wilhelm Inst. für Chemie, Berlin-Dahlem, 275–285Google Scholar
  3. Beckmann, E. (1919). British Patent151, 229Google Scholar
  4. Donefer, E., Adeleye, O.A., Jones, T.A.O. (1969). Effect of Urea Supplementation on the Nutritive Value of NaOH-treated Oat straw. In: Advances in chemistry, G.J. Hajny, E.T. Reese, eds., series 95, Wash. D.C.: American Chem. Soc.Google Scholar
  5. Eger, G. (1965). Arch. Mikrobiol.50, 343–356PubMedGoogle Scholar
  6. Engels, O. (1948). Futterzellulose — ihre Gewinnung und Verwertung. Verlag für Chemische Industrie, Ziolkowski, AugsburgGoogle Scholar
  7. Faist, W.C., Baker, A.J., Tarkow, H. (1970). J. Anim. Sci.30, 832–835Google Scholar
  8. Falck, R. (1926). Ber. Deutsch. Bot. Ges.4, 652–664Google Scholar
  9. Falck, R. (1930). Forstarchiv6, 366–377Google Scholar
  10. Findlay, W.P.K. (1940). Annals of BotanyIV, 701–712Google Scholar
  11. Grinbergs, J. (1975). Personal CommunicationGoogle Scholar
  12. Han Young, W. (1974). Appl. Microbiol.29, 510–514Google Scholar
  13. Han Young, W., Anderson, A.W. (1975). Appl. Microbiol.30, 930–934Google Scholar
  14. Han Young, W., Callihan, C.D. (1974). Appl. Microbiol.27, 159–165PubMedGoogle Scholar
  15. Herzig, I., Dvořák, M., Věžnik, Z. (1968). Biol. Chem. Výž. Hospodářských Zviřat3, 249–253Google Scholar
  16. Knoche, W., Cruz-Koke, E., Pacotet, M. (1929). Zbl. Bakt. Parasitk. Infektk. II. Abt.79, 427–430Google Scholar
  17. Kühlwein, H. (1963). Zbl. Bakt. Parasitk. Hygiene II. Abt.116, 294–299Google Scholar
  18. Lindeberg, G. (1949). Arkiv Botanik33 A, 1–16Google Scholar
  19. Magnus, H. (1919). Theorie und Praxis der Strohaufschließung. Berlin: Paul PareyGoogle Scholar
  20. Millett, M.A., Baker, A.J., Satter, L.D. (1976). Physical and Chemical Pretreatments for Enhancing Cellulose Saccharification. In: Enzymatic Conversion of Cellulose Materials, Technology and Applications (E.L. Gaden, Jr., M.H. Mandels, E.T. Reese, L.A. Spano) Interscience Publication6, 125–153, New York, London, Sydney, Toronto: Wiley and SonsGoogle Scholar
  21. Mokras, L.C. (1954). J. Biol. Chemistry208, 55–59Google Scholar
  22. Phillippi, F. (1893). Hedwigia, 115–118Google Scholar
  23. Püschel, J. (1970). Deutsche Gärtnerpost 19, 21, 23, 25, 26Google Scholar
  24. Rohr, K. (1976). Personal CommunicationGoogle Scholar
  25. Rypáček, V. (1966). Biologie Holzzerstörender Pilze, Jena: G. FischerGoogle Scholar
  26. Scháněl, L., Herzig, I., Dvořák, M., Věžnik, Z. (1966). Způsob využiti méně hodnotných druhů slámy ke krmným učelům, Zlepšovaci návrh ze dne 1.4. 1966, VUVL, Brno, ČSSRGoogle Scholar
  27. Tilley, J.M.A., Terry, R.A. (1963). British Grassland Soc.18, 104–111Google Scholar
  28. Wilson, R.K., Pidgen, W.J. (1964). Can. J. Anim. Sci.44, 122–123Google Scholar
  29. Zadražil, F. (1975). Z. Pflanzenern., Bodenkde. 263–278Google Scholar
  30. Zadražil, F. (1976). Z. Acker- u. Pflanzenbau142, 44–52Google Scholar
  31. Zadražil, F., Schliemann, J. (1975). Der Champignon163, 7–22Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • F. Zadražil
    • 1
  1. 1.Institut für BodenbiologieBundesforschungsanstalt für LandwirtschaftBraunschweigGermany

Personalised recommendations