Origins of life

, Volume 8, Issue 1, pp 39–53 | Cite as

Symbiosis and the origin of life

  • G. A. M. King


The paper uses chemical kinetic arguments and illustrations by computer modelling to discuss the origin and evolution of life. Complex self-reproducing chemical systems cannot arise spontaneously, whereas simple auto-catalytic systems can, especially in an irradiated aqueous medium. Self-reproducing chemical particles of any complexity, in an appropriate environment, have a self-regulating property which permits long-term survival. However, loss of materials from the environment can lead to continuing decay which is circumvented by physical union between different kinds of self-reproducing particles. The increasing complexity produced by such unions (symbioses) is irreversible so that the chemical system evolves. It is suggested that evolution by successive symbioses brough about the change from simple, spontaneously arising, auto-catalytic particles to complex prokaryotic cells.


Organic Chemistry Geochemistry Computer Modelling Aqueous Medium Chemical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G.: 1957,Amer. Naturalist 91, 65.Google Scholar
  2. Allen, G.: 1970,Perspec. Biol. Medicine 14, 109.Google Scholar
  3. Anker, H. S.: 1961,Perspec. Biol. Medicine 5, 86.Google Scholar
  4. Ashwell, M. and Work, T. S.: 1970,Ann. Rev. Biochem. 39, 251.Google Scholar
  5. Blum, H. F.: 1968,Time's Arrow and Evolution, 3rd ed., Princeton University Press, New Jersey.Google Scholar
  6. Borst, P.: 1972,Ann. Rev. Biochem. 41, 333.Google Scholar
  7. Borst, P. and Kroon, A. M.: 1969,Int. Rev. Cytology 26, 107.Google Scholar
  8. Calvin, M.: 1956,Amer. Sci. 44, 248.Google Scholar
  9. Calvin, M.: 1969,Chemical Evolution, Oxford University Press, London.Google Scholar
  10. Echlin, P.: 1966,Science Journal 2, 42.Google Scholar
  11. Eigen, M.: 1971,Naturwiss. 58, 465.Google Scholar
  12. Frank, F. C.: 1953,Biochim. Biophys. Acta 11, 459.Google Scholar
  13. Frank-Kamenetskii, D. A.: 1969,Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York.Google Scholar
  14. Henry, S. M. (ed.): 1966,Symbiosis, Academic Press, New York.Google Scholar
  15. Hinshelwood, C. N.: 1946,Chemical Kinetics of the Bacterial Cell, Oxford University Press, London.Google Scholar
  16. Kirk, J. T. O.: 1972,Sub-Cell. Biochem. 1, 333.Google Scholar
  17. Linnane, A. W., Haslam, J. M., Lukins, H. B., and Nagley, P.: 1972,Ann. Rev. Microbiol. 26, 163.Google Scholar
  18. McNaughton, G. S.: 1975,Auto-catalysis in Chemical Evolution, Physics and Engineering Laboratory (D.S.I.R., New Zealand) Report 481.Google Scholar
  19. Margulis, L.: 1970,Origin of Eukaryotic Cells, Yale University Press, New Haven.Google Scholar
  20. Martell, A. E.: 1968,Pure App. Chem. 17, 129.Google Scholar
  21. Morowitz, H. J.: 1967, p. 35 of F. M. Snell (ed.),Progress in Theoretical Biology. Vol. I, Academic Press, New York.Google Scholar
  22. Nass, S.: 1969,Int. Rev. Cytology 25, 55.Google Scholar
  23. Raven, P. H.: 1970,Science 169, 641.Google Scholar
  24. Ris, H. and Plaut, W.: 1962,J. Cell Biol. 13, 383.Google Scholar
  25. Rössler, O. E.: 1971,Z. Naturforsch. 26b, 741.Google Scholar
  26. Sagan, L.: 1967,J. Theor. Biol. 14, 225.Google Scholar
  27. Schatz, G. and Mason, T. L.: 1974,Ann. Rev. Biochem. 43, 51.Google Scholar
  28. Taylor, D. L.: 1970,Int. Rev. Cytology 27, 29.Google Scholar
  29. Ycas, M.: 1955,Proc. Natl. Acad. Sci. (U.S.) 41, 714.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • G. A. M. King
    • 1
  1. 1.Physics and Engineering LaboratoryD.S.I.R.Lower HuttNew Zealand

Personalised recommendations