Space life sciences

, Volume 2, Issue 1, pp 5–17 | Cite as

The history of atmospheric oxygen

  • M. G. Rutten


A primeval anoxygenic terrestrial atmosphere having been postulated on astronomical grounds, experiments using simulated conditions have shown that the formation of ‘organic’ molecules by abiogenic processes with proceed freely in such an environment.

Atmospheric oxygen will at first be limited to 0.001 PAL through the Urey mechanism which inhibits further dissociation of water above this level. All atmospheric oxygen exceeding this level must be biogenic and produced by photosynthesis. Molecular fossils prove its existence 2.7 billion years ago. Sedimentary ores, notably pyrite sands of gold-uranium reefs and banded iron formations, attest to the existence of an atmosphere with ‘little’ oxygen up to 1.8 billion years ago. Geochemistry does not, howerver, supply us with data as to the level of oxygen at that time. The Pasteur Point, on the other hand, at which microbes change from fermentation to respiration and vice versa, is a powerful regulating factor situated at 0.01 PAL of free oxygen.

It is postulated that the primeval atmosphere of Lower and Middle Precambrian was limited to this level of free oxygen. At this level pre-life — the formation of ‘organic’ compounds through inorganic processes — still exists. Pre-life and early life therefore were coexistent for two billion years at least, and were able to influence each, other over all this time. The primeval, atmosphere was definitely superseded by an oxygenic one about 1.45 billion years ago, but the level of 0.1 PAL of free oxygen was only reached during the Ordovician, 0.4–0.5 billion years ago.


Fermentation Respiration Photosynthesis Pyrite Microbe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H.: 1966, ‘Chemical Events on the Primitive Earth’,Proc. Natl. Acad. Sci. (U.S.) 55, 1365.Google Scholar
  2. Barghoorn E. S. and Tyler, S. A.: 1965, ‘Microorganisms from the Gunflint Chert’,Science 147, 563.Google Scholar
  3. Berkner, L. V. and Marshall, L. C.: 1965., ‘On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere’,J. Atmosph. Sci. 22, 225.Google Scholar
  4. Berkner, L. V. and Marshall, L. C.: 1966, ‘Limitation on Oxygen Concentration in a Primitive Planetary Atmosphere’,J. Atmosph. Sci. 23, 133.Google Scholar
  5. Bernal, J. D.: 1951.,The Physical Basis of Life, Routledge & Paul, London.Google Scholar
  6. Calvin M.: 1965, ‘Chemical, Evolution’,Proc. Roy. Soc. A288, 441.Google Scholar
  7. Derry, D. R.: 1960, ‘Evidence of the Origin of the Blind River Uranium Deposits’,Econ. Geology 55, 906.Google Scholar
  8. Garrels, R. M.: 1960.,Mineral Equilibria, Harper, New York.Google Scholar
  9. Goldich, S. S., Nier, A. O., Baadsgaard, H., Hoffman., J. H. and Krueger, H.: 1961, ‘The Precambrian Geology and Geochronology of Minnesota’,Minnesota Geol. Surv., Bull. 41, Univ. Minnesota Press.Google Scholar
  10. Govett, G. J. S.: 1966, ‘Origin of Banded Iron Formations’,Bull. Geol. Soc. Amer. 77, 1191.Google Scholar
  11. Hough, J. L.: 1958, ‘Fresh-Water Environment of Deposition of Precambrian Banded Iron Formation’,Jour. Sed. Petrology 28, 414.Google Scholar
  12. Oparin, A. I.: 1938,The Origin of Life, 2nd ed., Dover Publications Inc, New York.Google Scholar
  13. Oparin, A. I.: 1964,The Chemical Origin of Life, Amer. Lecture Ser., Springfield, Mass.Google Scholar
  14. Oró, J.: 1965, ‘Investigation of Organo-Chemical Evolution’, inCurrent Aspects of Exobiology (ed. by G. Mamikunian and M. H. Briggs) Pergamon, London.Google Scholar
  15. Pirie, N. W.: 1959,Chemical Diversity and the Origins of Life. Origin of Life on Earth, IUB Symposium Series, Vol. I, Pergamon Press, London.Google Scholar
  16. Priem, H. N. A., Mulder, F., Boelrijk, N. A. I. M., Hebeda, E. H., Verschure, F. H. and Verdurmen, E. A. T.: 1968, ‘Geochronological and Paleomagnetic Investigations in Southern Sweden’,Phys. Earth Planet. Interiors 1, 373.Google Scholar
  17. Ramdohr, P.: 1958, ‘Die Uran- und Goldlagerstätten. Witwatersrand, Blind River District, Dominion Reef, Serra de Jacobina: Erzmikroskopische Untersuchungen und ein geologischer Vergleich’,Abhandl. Deutsch. Akad. Wiss., Berlin, Kl. f. Chem., Geol. u. Biol. 1958,3.Google Scholar
  18. Rutten, M. G.: 1962,The Geological Aspects of the Origin of Life on Earth, Elsevier, Amsterdam.Google Scholar
  19. Rutten, M. G.: 1966, ‘Geologic Data on Atmospheric History’,Palaeogeography, etc. 2, 47.Google Scholar
  20. Rutten, M. G.: 1969, ‘Sedimentary Ores of the Early and Middle Precambrian and the History of Atmospheric Oxygen’, inSedimentory Ores; Proc, 15th Inter-Univ. Congr., 1957., Leicester, p. 187.Google Scholar
  21. Sagan, L.: 1967, ‘On the Origin of Mitosing Cells’,J. Theoret. Biol. 14, 225.Google Scholar
  22. Schidlowski. M.: 1966b, ‘Beitrage zur Kenntnis der radioaktiven Bestandteile der Witwatersrand-Konglomerate. II: Brannerit und “Uranpecherzgeister”’,N. Jb. Mineral. Abh. 105, 310.Google Scholar
  23. Urey, H. C.: 1952,The Planets, Yale Univ. Press, New Haven, Conn.Google Scholar

Copyright information

© D. Reidel Publishing Company 1970

Authors and Affiliations

  • M. G. Rutten
    • 1
  1. 1.Geological Institute of the State University of UtrechtThe Netherlands

Personalised recommendations