Advertisement

Exact solution of Pontryagin's equations of optimal control—Part 1

  • H. Kagiwada
  • R. Kalaba
  • Y. Thomas
Article

Abstract

In the treatment of constrained optimal control processes, it is customary to employ the Pontryagin maximum principle, which requires the solution of a two-point boundary-value problem. Various economic, mechanical, and biological control processes are of this type, including optimization of hemodialysis. Generally speaking, two-point boundary-value problems are more difficult to treat computationally than initial-value or Cauchy problems. In this paper, a Cauchy system is derived for a class of optimal control processes, and it is then shown that the solution of the Cauchy problem satisfies the Pontryagin equations.

Keywords

Exact Solution Cauchy Problem Biological Control Control Process Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collatz, L.,The Numerical Treatment of Differential Equations, Springer-Verlag, Berlin, 1960.Google Scholar
  2. 2.
    Richtmyer, R., andMorton, K.,Difference Methods for Initial-Value Problems, John Wiley and Sons (Interscience Publishers), New York, 1967.Google Scholar
  3. 3.
    Kagiwada, H., andKalaba, R.,An Initial Value Method for Fredholm Integral Equations of Convolution Type, International Journal of Computer Mathematics, Vol. 2, No. 2, 1968.Google Scholar
  4. 4.
    Kagiwada, H., Kalaba, R., andVereeke, B.,The Invariant Imbedding Numerical Method for Fredholm Integral Equations with Degenerate Kernels, Journal of Approximation Theory, Vol. 1, No. 3, 1968.Google Scholar
  5. 5.
    Kagiwada, H., andKalaba, R.,Verification of the Invariant Imbedding Method for Certain Fredholm Integral Equations, Journal of Mathematical Analysis and Applications, Vol. 23, No. 3, 1968.Google Scholar
  6. 6.
    Kagiwada, H., Kalaba, R., andUeno, S.,Initial Value Methods for Integral Equations Arising in Theories of the Solar Atmosphere, Astrofizika, Vol. 4, No. 4, 1968.Google Scholar
  7. 7.
    Kagiwada, H., andKalaba, R.,Derivation and Validation of an Initial-Value Method for Certain Nonlinear Two-Point Boundary-Value Problems, Journal of Optimization Theory and Applications, Vol. 2, No. 6, 1968.Google Scholar
  8. 8.
    Bellman, R., Kagiwada, H., andKalaba, R.,Invariant Imbedding and the Numerical Integration of Boundary-Value Problems for Unstable Linear Systems of Ordinary Differential Equations, Communications of the Association for Computing Machinery, Vol. 10, No. 2, 1967.Google Scholar
  9. 9.
    Casti, J., Kalaba, R., andVereeke, B.,Invariant Imbedding and a Class of Variational Problems, Journal of Optimization Theory and Applications, Vol. 3, No. 1, 1969.Google Scholar
  10. 10.
    Kagiwada, H., Kalaba, R., Schumitzky, A., andSridhar, R.,Cauchy and Fredholm Methods for Euler Equations, Journal of Optimization Theory and Applications, Vol. 2, No. 3, 1968.Google Scholar
  11. 11.
    Kagiwada, H., andKalaba, R.,Optimal Trajectories for Quadratic Variational Processes via Invariant Imbedding, Journal of Optimization Theory and Applications, Vol. 4, No. 2, 1969.Google Scholar
  12. 12.
    Kalaba, R., andSridhar, R.,Invariant Imbedding and Optimal Control Theory, Journal of Optimization Theory and Applications, Vol. 4, No. 5, 1969.Google Scholar
  13. 13.
    Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., andMishchenko, E. F.,The Mathematical Theory of Optimal Processes, John Wiley and Sons (Interscience Publishers), New York, 1962.Google Scholar
  14. 14.
    Lanczos, C.,The Variational Principles of Mechanics, University of Toronto Press, Toronto, 1957.Google Scholar
  15. 15.
    Bellman, R., Kagiwada, H., andKalaba, R.,Invariant Imbedding and Nonvariational Principles of Mechanics, International Journal of Nonlinear Mechanics, Vol. 1, No. 1, 1966.Google Scholar
  16. 16.
    Kagiwada, H., Kalaba, R., Schumitzky, A., andSridhar, R.,Invariant Imbedding and Sequential Interpolating Filters for Nonlinear Processes, Journal of Basic Engineering, Vol. 91, No. 2, 1969.Google Scholar
  17. 17.
    Bellman, R., andKalaba, R.,Dynamic Programming and Modern Control Theory, Academic Press, New York, 1965.Google Scholar
  18. 18.
    Nahi, N.,Estimation Theory and Applications, John Wiley and Sons, New York, 1969.Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • H. Kagiwada
    • 1
  • R. Kalaba
    • 1
  • Y. Thomas
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos Angeles
  2. 2.University of NantesNantesFrance

Personalised recommendations