Advertisement

Origins of life

, Volume 5, Issue 1–2, pp 239–252 | Cite as

Chemical and catalytical properties of thermal polymers of amino acids (proteinoids)

  • Klaus Dose
Part IV/Precellular Organization

Abstract

The significance of thermal polyamino acids (proteinoids) as abiotic predecessors of proteins is reviewed on the basis of new experimental results. Most proteinoids yield only 50% to 80% amino acid upon acid hydrolysis. They contain 40% to 60% less peptide links than typical proteins, whereas their average nitrogen content is like that of proteins. The arrangement of amino acid residues is nonrandom. The degree of nonrandomness is difficult to determine because unusual crosslinks disturb most of the sequencing methods typically applied, in protein chemistry. The products obtained in a polymerization experiment are heterogeneous. They can be separated into a limited number of related fractions by chromatography or electrophoresis and other separation methods applied in protein chemistry. Their molecular weights are typically between 400 and 10 000. The number of free NH2-groups, is usually smaller than in comparable proteins A significant fraction of NH2-groups yields imidazole-type bases during the thermal polymerization. Optically active amino acids racemize during the same process. So far no helicity could be detected. Proteinoids are thus clearly distinct from proteins However, many of them exhibit weak catalytic activities and tend to undergo self-assembly into microstructures. Their properties of which only a few have been mentioned still support their role as possible candidates for ancestors of first proteins.

Keywords

Catalytic Activity Amino Acid Residue Nitrogen Content Acid Hydrolysis Catalytical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akabori, S. and Yamamoto, M.: 1972, in D. L. Rohlfing and A. I. Oparin (eds.),Molecular Evolution, Plenum Press, New York, p. 189.Google Scholar
  2. Borsook, H.: 1953,Adv. Protein Chem. 8, 127.Google Scholar
  3. Calvin, M.: 1969,Proc. Roy. Soc. Edinburgh, Sect. B, Biology 70, part 4, 273.Google Scholar
  4. Crick, F. H. C.: 1958,Symp. Soc. Exp. Biol 12, 138.Google Scholar
  5. Dose, K. and Rauchfuß, H.: 1972, in D. L. Rohlfing and A. I. Oprin (eds.),Molecular Evolution, Plenum Press, New York, p. 199ff.Google Scholar
  6. Dose, K. and Zaki, L.: 1971,Z. Naturforsch 26b, 144.Google Scholar
  7. Durant, D. H. and Fox, S. W.: 1966,:Federation Proc. 25, 342.Google Scholar
  8. Eigen, M.: 1971,Naturwissenschaften 58, 519.Google Scholar
  9. Fox, S. W.: 1956,Am. Sci. 44, 347.Google Scholar
  10. Fox, S. W.: 1968, in H. Mark, N. G. Gaylord and Bikales (eds).Encyclopedia of Polymer Science and Technology, Vol. 9, Interscience, New York, p. 284.Google Scholar
  11. Fox, S. W.: 1969,Naturwissenschaften 56, 1.Google Scholar
  12. Fox, S. W. and Dose, K.: 1972a, inMolecular Evolution and the Origin of Life, Freeman, San Francisco, p. 135ff.Google Scholar
  13. Fox, S. W. and Dose, K.: 1972b, inMolecular Evolution and the Origin of Life, Freeman, San Francisco, p. 152.Google Scholar
  14. Fox, S. W. and Dose, K.: 1972c, inMolecular Evolution and the Origin of Life, Freeman, San Francisco, p. 161.Google Scholar
  15. Fox, S. W. and Harada, K.: 1958.:Science 128, 1214.Google Scholar
  16. Fox, S. W. and Harada, K.: 1960,J. Am. Chem. Soc. 82, 3745.Google Scholar
  17. Fox, S. W. and Harada, K.: 1963,Federation Proc. 22, 479.Google Scholar
  18. Fox, S. W., Harada, K., Woods, K. R., and Windsor, C. R.: 1963,Arch. Biochem. Biophys. 102, 439.Google Scholar
  19. Fox, S. W. and Joseph, D.: 1965, in S. W. Fox (ed.),The Origin of Prebiological Systems, Academic Press, New York, p. 371.Google Scholar
  20. Fox, S. W. and Krampitz, G.: 1964,Nature 203 1362.Google Scholar
  21. Fox, S. W. and Nakashima, T.: 1967,Biochim. Biophys. Acta 140 155.Google Scholar
  22. Gevers, W., Kleinkauf, H., and Lipmann F.: 1969,Proc. Nat. Acad. Sci. 63, 1335.Google Scholar
  23. Harada, K. and Fox, S. W.: 1965,Arch. Biochem. Biophys 109, 49.Google Scholar
  24. Hardebeck, H. G. and Fox, S. W.: 1967,3rd Ann. Rept. Inst. Mol. Evolution, Coral Gables, Florida, p. 18.Google Scholar
  25. Hardebeck, H. G., Krampitz, G., and Wulf, L.: 1968,Arch. Biochem. Biophys 123, 72.Google Scholar
  26. Kaplan, R. W.: 1971, in R. Buvet and C. Ponnamperuma (eds.),Molecular Evolution, North Holland, Amsterdam, Vol. I, p. 319.Google Scholar
  27. Krampitz, G.: 1968,156th Nat. Meeting Am. Chem. Soc., Atlantic City, Abstr. Papers, Div. Biol. Chem. p. 87.Google Scholar
  28. Krampitz, G. and Hardebeck, H. G.: 1966,Naturwissenschaften 53 81.Google Scholar
  29. Krampitz, G., Diehl, S., and Nakashima, T.: 1967,Naturwissenschaften 54, 516.Google Scholar
  30. Krampitz, G., Haas, W., and Baars-Diehl, S.: 1968a,Naturwissenschaften 55, 345.Google Scholar
  31. Krampitz, G., Baars-Diehl, S., Haas, W., and Nakashima, T.: 1968b,Experientia 24, 140.Google Scholar
  32. Lacey, J. C., Jr and Mullins, D. W., Jr.: 1972 in D. L. Rohlfing and A. I. Oparin (eds.),Molecular Evolution, Plenum Press, New York, p. 189.Google Scholar
  33. Lipmann, F., Gevers, W., Kleinkauf, H., and Roskoski, R., Jr.: 1971,Adv. Enzymology 35, 1.Google Scholar
  34. Nakashima, T., Fox, S. W., and Wang, C.: 1967,Arbeitstagung Extraterrestr. Biophysik und Biologie und Raumfahrtmedizin, Tagungsbericht (Chem. Abstr.72, 50967x)Google Scholar
  35. Noguchi, J. and Saito, T.: 1962, in M. A. Stahmann (ed.),Polyamino Acids, Polypeptides, and Proteins, Univ. of Wisconsin Press, Madison, Wisconsin, p. 313.Google Scholar
  36. Oshima, T.: 1968,Arch. Biochem. Biophys 126, 478.Google Scholar
  37. Paecht-Horowitz, M., Berger, J., and Katchalsky, A.: 1970,Nature 228, 636.Google Scholar
  38. Paecht-Horowitz, M. and Katchalsky, A.: 1967,Biochim Biophys. Acta 140, 14.Google Scholar
  39. Ponnamperuma, C. and Peterson, E.: 1965,Science 147, 1572.Google Scholar
  40. Rohlfing, D. L.: 1964, Ph. D. dissertation Florida State University, Tallahassee.Google Scholar
  41. Rohlfing, D. L.: 1967,Arch. Biochem. Biophys 118, 127.Google Scholar
  42. Rohlfing, D. L. and Fouche, C. E.: 1972, in D. L. Rohlfing and A. I. Oparin (eds.),Molecular Evolution, Plenum Press, New York, p. 219ff.Google Scholar
  43. Rohlfing, D. L. and Fox, S. W.: 1967,Arch. Biochem. Biophys 118, 127.Google Scholar
  44. Steinman, G.: 1967,Arch. Biochem. Biophys. 121, 553.Google Scholar
  45. Steinman, G., Lemmon, R. M., and Calvin, M.: 1964,Proc. Nat. Acad. Sci. 52, 27.Google Scholar
  46. Tetas, M. and Löwenstein, J. M.: 1963,Biochemistry,2, 350.Google Scholar
  47. Usdin, V. R., Mitz, M. A., and Killos, P. J.: 1967,Arch. Biochem. Biophys. 122, 258.Google Scholar
  48. Vegotsky, A: 1961, Ph. D. dissertation, Florida State University, Tallahassee.Google Scholar
  49. Vestling, C.: 1960, in S. W. Fox, and K. Harada (eds.),J. Am. Chem. Soc. 82, 3745.Google Scholar
  50. Watson, J. D. and Crick, F. H. C.: 1953,Nature 171, 737.Google Scholar
  51. Weber, A. L., Wood, A., Hardebeck, H. G., and Fox, S. W.: 1968,Federation Proc. 27, 830.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • Klaus Dose
    • 1
  1. 1.Institute for BiochemistryJohannes Gutenberg-UniversityMainzF.R.G.

Personalised recommendations