Origins of life

, Volume 5, Issue 1–2, pp 57–67 | Cite as

Catalytic reactions in the solar nebula: Implications for interstellar molecules and organic compounds in meteorites

  • Edward Anders
  • Ryoichi Hayatsu
  • Martin H. Studier
Part I/Cosmochemistry

Abstract

Organic compounds in meteorites seem to have formed by Fischer-Tropsch-type, catalytic reactions of CO, H2, and NH3 in the solar nebula, at 360–400K and (4–10)×10−6 atm. The onset of these reactions was triggered by the formation of catalytically active grains of magnetite and serpentine at these temperatures.

Laboratory experiments show that the Fischer-Tropsch reaction gives a large kineticisotope fractionation of C12/C13, duplicating the hitherto unexplained fractionation in meteorites. All of the principal compound classes in meteorites are produced by this reaction, or a variant involving a brief excursion to higher temperatures. (1) normal, mono-, and dimethylalkanes (2)arenes andalkylarenes; (3) dimericisoprenoids from C9 to C14; (4)purines andpyrimidines, such as adenine, guanine, uracil, thymine, xanthine, etc.; (5)amino acids, including tyrosine and histidine; (6)porphyrin-like pigments; (7) aromaticpolymer with −OH and −COOH groups.

These reactions may also have played a major role in the evolution of life: first, by converting carbon to a sufficiently non-volatile form to permit its accretion by the inner planets; second, by synthesizing organic compounds on the primitive planets whenever CO, H2, NH3, and clay or magnetite particles came together at the right temperature. Similar reactions in other solar nebulae may be the source of interstellar molecules, as first suggested by G. H. Herbig. Ten of the twelve polyatomic interstellar molecules have in fact been seen in these syntheses or in meteorites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E.: 1971a,Geochim. Cosmochim. Acta 35, 516.Google Scholar
  2. Anders, E.: 1971b,Ann. Rev. Astron. Astrophys. 9, 1.Google Scholar
  3. Anders, E.: 1972, in H. Reeves (ed.),L'Origine du Système Solaire, CNRS, Paris, 179.Google Scholar
  4. Anders, E.: 1973, in M. A. Gordon and L. Snyder (eds.),Molecules in the Galactic Environment, John Wiley and Sons, New York, 429.Google Scholar
  5. Anders, E., Hayatsu, R., and Studier, M. H.: 1973,Science 182, 721.Google Scholar
  6. Anderson, R. B.: 1956, in: P. H. Emmett (ed.),Catalysis. IV: Hydrocarbon Synthesis, Hydrogenation and Cyclization, Reinhold, New York, p. 29.Google Scholar
  7. Bitz, M. C. and Nagy, B.: 1966,Proc. Nat. Acad. Sci. 56, 1383.Google Scholar
  8. Briggs, M. H. and Mamikunian, G.: 1963,Space Sci. Rev. 1, 647.Google Scholar
  9. Calvin, M.: 1969,Chemical Evolution, Clarendon, Oxford, Chapters 4–6.Google Scholar
  10. Cameron, A. G. W.: 1973, in D. N. Schramm and W. D. Arnett (eds.),Explosive Nucleosynthesis, Univ. of Texas Press, Austin, p. 3.Google Scholar
  11. Cameron, A. G. W. and Pine, M. R.: 1973,Icarus 18, 377.Google Scholar
  12. Clayton, R. N.: 1963,Science 140, 192.Google Scholar
  13. Cronin, J. R. and Moore, C. B.: 1971,Science 172, 1327.Google Scholar
  14. Dayhoff, M. O., Lippincott, E. R., and Eck, R. V.: 1964,Science 146, 1461.Google Scholar
  15. Emmett, P. H. (ed.): 1956,Catalysis. IV: Hydrocarbon Synthesis, Hydrogenation and Cyclization, Reinhold, New York.Google Scholar
  16. Folsome, C. E., Lawless, J. G., Romiez, M., and Ponnamperuma, C.: 1973,Geochim. Cosmochim. Acta 37, 455.Google Scholar
  17. Galwey, A.: 1968,J. Catalysis 12, 352.Google Scholar
  18. Galwey, A.: 1972,Geochim. Cosmochim. Acta 36, 1115.Google Scholar
  19. Gelpi, E. and Oró, J.: 1970a,Geochim. Cosmochim. Acta 34, 981.Google Scholar
  20. Gelpi, E. and Oró, J.: 1970b,Geochim. Cosmochim. Acta 34, 995.Google Scholar
  21. Gelpi, E., Nooner, D. W., and Oró, J.; 1970,Geochim. Cosmochim. Acta 34, 421.Google Scholar
  22. Hayatsu, R.: 1964,Science 146, 1291.Google Scholar
  23. Hayatsu, R.: 1965,Science 149, 443.Google Scholar
  24. Hayatsu, R., Studier, M. H., Oda, A., Fuse, K., and Anders, E.: 1968,Geochim. Cosmochim. Acta 32, 175.Google Scholar
  25. Hayatsu, R., Studier, M. H., and Anders, E.: 1971,Geochim. Cosmochim. Acta 35, 939.Google Scholar
  26. Hayatsu, R., Studier, M. H., Matsuoka, S., and Anders, E.: 1972,Geochim. Cosmochim. Acta 36, 555.Google Scholar
  27. Hayes, J. M.: 1967,Geochim. Cosmochim. Acta 31, 1395.Google Scholar
  28. Hayes, J. M. and Biemann, K.: 1968,Geochim. Cosmochim. Acta 32, 239.Google Scholar
  29. Herbig, G. H.: 1970,Mém. Soc. Roy. Sci. Liège XIX, 13.Google Scholar
  30. Hodgson, G. W. and Ponnamperuma, C.: 1968,Proc. Nat. Acad. Sci. 59, 22.Google Scholar
  31. Hodgson, G. W. and Baker, B. L. 1969,Geochim. Cosmochim. Acta 33, 943.Google Scholar
  32. Khare, B. N. and Sagan, C.: 1973,Icarus, in press.Google Scholar
  33. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., and Moore, C.: 1970,Nature 228, 923.Google Scholar
  34. Kvenvolden, K., Lawless, J., and Ponnamperuma C.: 1971,Proc. Nat. Acad. Sci. 68, 486.Google Scholar
  35. Lancet, M. S.: 1972, Ph. D. thesis, University of Chicago.Google Scholar
  36. Lancert, M. S. and Anders, E.: 1970,Science 170, 980.Google Scholar
  37. Lancet, M. S. and Anders, E.: 1970,Geochim. Cosmochim. Acta 37, 1371.Google Scholar
  38. Nagy, B. and Bitz, M. C.: 1963.Arch. Biochem. Biophys. 101, 240.Google Scholar
  39. Nooner, D. W. and Oró, J.: 1967,Geochim. Cosmochim. Acta 31, 1359.Google Scholar
  40. Onuma, N., Clayton, R. N., and Mayeda, T. K.: 1972,Geochim. Cosmochim. Acta 36, 169.Google Scholar
  41. Oró, J.: 1972,Space Life Sci. 3, 507.Google Scholar
  42. Oró, J. and Han, J.: 1966,Science 153, 1393.Google Scholar
  43. Oró, J., Gibert, J., Lichtenstein, H., Wikstrom, S., and Flory, D. A.: 1971.Nature 230, 105.Google Scholar
  44. Ring, D., Wolman, Y., Friedmann, N., and Miller, S. L.: 1972,Proc. Nat. Acad. Sci. 69, 765.Google Scholar
  45. Sagan, C.: 1973, in M. A. Gordon and L. Snyder (eds.),Molecules in the Galactic Environment, John Wiley, New York, p. 451.Google Scholar
  46. Smith, J. W. and Kaplan, I. R.: 1970,Science 167, 1367.Google Scholar
  47. Storch, H. H., Golumbic, N., and Anderson, R. B.: 1951, inThe Fischer-Tropsch and Related Syntheses, John Wiley and Sons, New York, p. 9.Google Scholar
  48. Studier, M. H., Hayatsu, R., and Anders, E.: 1965a Enrico Fermi Institute preprint No. 65-115.Google Scholar
  49. Studier, M. H., Hayatsu, R., and Anders, E.: 1965b,Science 149, 1455.Google Scholar
  50. Studier, M. H., Hayatsu, R., and Anders, E.: 1968,Geochim. Cosmochim. Acta 32, 151.Google Scholar
  51. Studier, M. H., Hayatsu, R., and Anders, E.: 1972,Geochim. Cosmochim. Acta 36, 189.Google Scholar
  52. Urey, H. C.: 1953, inXIIIth Intern. Congr. Pure Applied Chem. (Plenary Lectures), IUPAC, London, 188.Google Scholar
  53. Vdovykin, G. P.: 1967,Carbonaceous Matter of Meteorites (Organic Compounds, Diamonds, Graphite), Nauka Publishing Office, Moscow. English Translation NASA TT F-582.Google Scholar
  54. Wolman, Y., Haverland, W. J., and Miller, S. L.: 1972,Proc. Nat. Acad. Sci. 69, 809.Google Scholar
  55. Yoshino, D., Hayatsu, R. and Anders, E.: 1971,Geochim. Cosmochim. Acta 35, 972.Google Scholar

Copyright information

© D. Reidel Publishing Company 1974

Authors and Affiliations

  • Edward Anders
    • 1
  • Ryoichi Hayatsu
    • 1
  • Martin H. Studier
    • 2
  1. 1.Enrico Fermi Institute and Dept. of ChemistryUniversity of ChicagoChicagoUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations