Origins of life

, Volume 9, Issue 4, pp 279–290 | Cite as

The radioracemization of amino acids by ionizing radiation: Geochemical and cosmochemical implications

  • William A. Bonner
  • Neal E. Blair
  • Richard M. Lemmon


A number of optically active amino acids, both in the solid state and as sodium or hydrochloride salts in aqueous solution, have been exposed to ionizing radiation from a 3000 Ci60Co γ-ray source to see if radioracemization might accompany their well-known radiolysis. γ-Ray doses causing 55–68% radiolysis of solid amino acids typically engendered 2–5% racemization, while aqueous solutions of the sodium salts of amino acids which underwent 53–66% radiolysis showed 5–11% racemization. Amino acid hydrochloride salts in aqueous solution, on the other hand, showed little or no radioracemization accompanying their radiolysis. Both radiolysis, and radioracemization were roughly proportional to γ-ray dose in the range studied (1–36×106 rads). Mechanisms for the radioracemization of amino acids in the solid state and as aqueous sodium salts are discussed, and the absence of radioracemization for aqueous hydrochloride salts is rationalized. Isovaline, a non-protein amino acid which has been isolated from the Murchison meteorite, contains no α-hydrogen atom and is therefore incapable of racemizationvia the chemical mechanisms by which ordinary amino acids racemize. Nevertheless, isovaline suffers radioracemization in the solid state to an extent comparable to that shown by ordinary amino acids, as do its sodium and hydrochloride salts in the solid state. The sodium salt of isovaline in aqueous solution, however, fails to racemize during its radiolysis. Several implicaitons of the newly described phenomenon of radiomization are pointed out for the fields of geochemistry and cosmochemistry.


Radiation Aqueous Solution Geochemistry Solid State Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E.: 1961,Ann. New York Acad. Sci. 93, 651.Google Scholar
  2. Bada, J. L.: 1972,Earth Planet. Sci. Lett. 15, 223.Google Scholar
  3. Bada, J. L., Luyendyk, B. P. and Maynard, J. B.: 1970,Science 170, 730.PubMedGoogle Scholar
  4. Bada, J. L. and Protsch, R.: 1973,Proc. Nat., Acad. Sci. 70, 1331.Google Scholar
  5. Bada, J. L., Protsch, R. and Schroeder, R. A.: 1973,Nature 241, 394.Google Scholar
  6. Bernstein, W. J., Lemmon, R. M. and Calvin, M.: 1972, inMolecular Evolution Prebiological and Biological, D. L. Rolfing and A. I. Oparin, eds., Plenum, New York, pp. 151–155.Google Scholar
  7. Bonner, W. A.: 1973,J. Chromatogr. Sci. 11, 101.PubMedGoogle Scholar
  8. Bonner, W. A.: 1974,J. Molec. Evol. 4, 23.PubMedGoogle Scholar
  9. Bonner, W. A. and Blair, N. E.: 1979,J. Chromatogr. 169, 153.Google Scholar
  10. Bonner, W. A., Blair, N. E. and Lemmon, R. M.: 1979a,J. Am. Chem. Soc. 101, 1079.Google Scholar
  11. Bonner, W. A., Blair, N. E., Lemmon, R. M., Flores, J. J. and Pollock, G. E: 1979b,Geochim. Cosmochim. Acta (In press).Google Scholar
  12. Bonner, W. A. and Flores, J. J.: 1975,Origins of Life 6, 187.PubMedGoogle Scholar
  13. Bonner, W. A. and Lemmon, R. M.: 1978a,J. Molec. Evol. 11, 95.PubMedGoogle Scholar
  14. Bonner, W. A. and Lemmon, R. M.: 1978b,Bioorg. Chem. 7, 175.Google Scholar
  15. Bonner, W. A., Lemmon, R. M. and Noyes, H. P.: 1978,J. Org. Chem. 43, 522.Google Scholar
  16. Bonner, W. A., Van Dort, M. A. and Flores, J. J.: 1974,Anal. Chem 46, 2104.PubMedGoogle Scholar
  17. Bonner, W. A., Van Dort, M. A. and Yearian, M. R.: 1975,Nature,258, 419.PubMedGoogle Scholar
  18. Bonner, W. A., Van Dort, M. A., Yearian, M. R., Zeman, H. D. and Li, G. C.: 1976/77,Israel J. Chem. 15, 89.Google Scholar
  19. Cressy, Jr., P. J. and Bogard, D. D.: 1976,Geochim. Cosmochim. Acta 40, 749.Google Scholar
  20. Cronin, J. R. and Moore, C. B.: 1971,Science,172, 1327.Google Scholar
  21. Dungworth, G.: 1976,Chem. Geol. 17, 135.Google Scholar
  22. Dungworth, G., Vincken, N. J. and Schwartz, A. W.: 1974,Comp. Biochem. Physiol. 47B, 391.Google Scholar
  23. Evans, E. A.: 1966,Nature 209, 169.PubMedGoogle Scholar
  24. Evans, E. A., Green, R. H. and Waterfield, W. R.: 1968, inProceedings of the International Conference on Methods of Preparation and Storage of Labelled Compounds, 2nd, pp. 1019–1036.Google Scholar
  25. Feng, P. Y. and Tobey, S. W.: 1959,J. Phys. Chem. 63, 759.Google Scholar
  26. Flores, J. J. and Bonner, W. A.: 1974,J. Mole. Evol. 3, 49.Google Scholar
  27. Flores, J. J., Bonner, W. A. and Van Dort, M. A.: 1977,J. Chromatogr. 132, 152.PubMedGoogle Scholar
  28. Garrison, W. M.: 1968, inCurrent Topics in Radiation Research, Vol IV, M. Ebert and A. Howard, eds., North-Holland Publishing Co., Amsterdam, pp. 45–94.Google Scholar
  29. Garrison, W. M.: 1972,Radiation Res. Rev. 3, 305.Google Scholar
  30. Hare, P. E. and Mitterer, R. M.: 1968,Carnegie Inst. Washington Yearbook 67, 205.Google Scholar
  31. Helfman, P. M. and Bada, J. L.: 1975,Proc. Nat. Acad. Sci. USA 72, 2891.PubMedGoogle Scholar
  32. Helfman, P. M. and Bada, J. L.: 1976,Nature 262, 279.PubMedGoogle Scholar
  33. Kroepelin, H.: 1968, inAdvances in Organic Geochemistry, Proceedings of the Fourth International Meeting, P. A. Schlenck, ed., Pergamon Press, Oxford, pp. 535–542.Google Scholar
  34. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R. and Moore, C.: 1970,Nature 228, 923.PubMedGoogle Scholar
  35. Kvenvolden, K. A., Lawless, J. G. and Ponnamperuma, C: 1972,Proc. Nat. Acad. Sci. 68, 486Google Scholar
  36. Kvenvolden, K., Peterson, E. and Pollock, G. E.: 1972,Adv. Org. Geochem., Proc. Int. Meeting, 5th, Hanover, Germany, Pergamon Press, Oxford-Braunschweig, pp. 387–401.Google Scholar
  37. Lawless, J. G.: 1973,Geochim. Cosmochim. Acta,37, 2207.Google Scholar
  38. Lawless, J. G., Kvenvolden K. A., Peterson, E., Ponnamperuma, C. and Moore, C.: 1971,Science 173, 626.Google Scholar
  39. Lawless, J. G. and Peterson, E.: 1975,Origins of Life 6, 38.Google Scholar
  40. Mitterer, R. M.: 1975,Earth Planet Sci. Lett. 28, 275.Google Scholar
  41. Noyes, H. P., Bonner, W. A. and Tomlin, J. A.: 1977,Origins of Life 8, 21.PubMedGoogle Scholar
  42. Oró, J., Gilbert, J., Lichtenstein, H., Wikstrom, S. and Flory, D. A.: 1971a,Nature 230, 105.PubMedGoogle Scholar
  43. Oró, J., Nakaparksin, S., Lichtenstein, H. and Gil-Av, E.: 1971b,Nature 230, 107.PubMedGoogle Scholar
  44. Pollock, G. E., Cheng, C. N., Cronin, S. E. and Kvenvolden, K. A.: 1975,Geochim. Cosmochim. Acta 39, 1571.Google Scholar
  45. Schroeder, R. A. and Bada, J. L.: 1973,Science 182, 479.Google Scholar
  46. Studier, M. H., Hayatsu, R. and Anders, E.: 1965,Science,149, 1455.Google Scholar
  47. Tolbert, B. M., Krinks, M. H., Castrillan, J. A., Henderson L. E. and Finch, M. B.: 1962, Unpublished manuscript.Google Scholar
  48. Ulbricht, T. L. V.: 1959,Quart. Rev. 13, 48.Google Scholar
  49. Ulbricht, T. L. V. and Vester, F.: 1962,Tetrahedron 18, 629.Google Scholar
  50. Vester, F., Ulbricht T. L. V. and Krauch, H.: 1959,Naturwiss. 46, 68.Google Scholar
  51. Wehmiller, J. F. and Hare, P. E.: 1971,Science 173, 907.Google Scholar
  52. Wehmiller, J. F., Hare, P. E. and Kajula, G. A.: 1976,Geochim. Cosmochim. Acta 40, 763.Google Scholar
  53. Williams, K. M. and Smith, G. G.: 1977,Origins of Life 8, 91.PubMedGoogle Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • William A. Bonner
    • 1
  • Neal E. Blair
    • 1
  • Richard M. Lemmon
    • 2
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations