Zeitschrift für Parasitenkunde

, Volume 61, Issue 2, pp 99–107

Acides gras de trois microsporidies (Protozoa) et de leur hôteCarcinus mediterraneus (Crustacea), sain et parasité parThelohania maenadis

  • C. P. Vivarès
  • B. J. Martin
  • H. J. Ceccaldi
Original Investigations

Résumé

La première étude concernant la composition lipidique des spores de Microsporidies (Protozoaires) a été réalisée. L'analyse porte sur la teneur en acides gras totaux des spores appartenant à trois espèces différentes parasitant la même espèce-hôte. Les différences dans les résultats des analyses obtenues pour chaque espèce méritent d'être soulignées et également l'abondance du 18:2ω6 chezThelohania maenadis (43%).

Les variations observées dans les compositions des acides gras du muscle et de l'hémolymphe provenant deCarcinus mediterraneus sain et parasité parThelohania maenadis ne permettent pas de mettre en évidence une action importante du parasite sur le métabolisme lipidique de l'hôte.

Fatty acids in three microsporidia (Protozoa) and in their hostCarcinus mediterraneus (Crustacea) healthy and parasitized byThelohania maenadis

Abstract

This study concerns the first investigation of the lipid composition of Microsporidia. Analysis of fatty acids in spores from three species (Thelohania maenadis, Ameson (Nosema) pulvis, andOrmieresia carcini), which are muscular parasites of the same host-species,Carcinus mediterraneus (Crustacea: Decapoda: Brachyura) has revealed a number of important differences with respect to the relative amounts of fatty acids. Especially interesting is the case of linoleic acid (C 18:2ω6) which reaches 43% of the total fatty acids inT. maenadis, but only about 1% in the other species (Table 1). The fatty acid pattern is different in the three species, but certain acids predominate: linoleic (C 18:2ω6) and oleic acids (C 18:1) inT. maenadis, palmitic (C 16:0) and oleic acids (C 18:1) in the other species.

Disturbances in the fatty acids of the host as a result of muscular microsporidiosis were also investigated. InC. mediterraneus, hemolymph and muscular fatty acid levels were not found to be notably modified (Table 2).

Key words

Protozoa Microsporidia Microsporidiosis Fatty acids Crab 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Ackman, R.G., Burger, R.D.: Cod liver oil fatty acids as secondary reference standard in the GLC of polyinsaturated fatty acids of animal origin: analysis of a dermal oil of the atlantic leatherback turtle. J. Am. Oil Chem. Soc.42, 38–42 (1965)Google Scholar
  2. Addison, R.F., Ackman, R.G., Hingley, J.: Lipid composition of the queen crab (Chinoecetes opilio). J. Fish. Res. Bd Canada29, 407–411 (1972)Google Scholar
  3. Allen, W.V.: Amino acid and fatty acid composition of tissues of the dungeness crab (Cancer magister). J. Fish. Res. Bd Canada28, 1191–1195 (1971)Google Scholar
  4. Bligh, E.G., Dyer, W.J.: Rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37, 911–917 (1959)Google Scholar
  5. Chapelle, S.: Lipid composition of tissue of marine Crustaceans. Biochem. System. Ecol.5, 241–248 (1977)Google Scholar
  6. Drach, P.: Mue et cycle d'intermue chez les Crustacés Décapodes. Ann. Inst. Oceanogr.19, 103–391 (1939)Google Scholar
  7. Erickson, B.W., Jr, Sprague, V.: Summary of the contributions of cytochemical reactions to our knowledge of microsporidian spores. SIP Newsletter2, 11 (1970)Google Scholar
  8. Erwin, J., Bloch, K.: Lipid metabolism of ciliated Protozoa. J. Biol. Chem.238, 1618–1624 (1963)Google Scholar
  9. Frentz, R.: Contribution à l'étude biochimique du milieu intérieur deCarcinus maenas Linné. Bull. Soc. Sci. Nancy N.S. Mém.1, 1–176 (1960)Google Scholar
  10. Guary, J.-C., Kayama, M., Murakami, Y.: Variations saisonnières de la composition en acides gras chezPenaeus japonicus (Crustacea: Decapoda). Mar. Biol.29, 335–341 (1975)Google Scholar
  11. Halevy, S., Finkelstein, D.: Lipid composition of soil amoebae. J. Protozool.12, 250–252 (1965)Google Scholar
  12. Horning, E.C., Ahrens, E.H., Lipsky, S.R., Mattson, S.H.W., Mead, J.S., Turner, D.A., Goldwater, W.H.: Quantitative analysis of fatty acids by gas liquid chromatograph. J. Lipid Res.5, 20–27 (1964)Google Scholar
  13. Kanazawa, A., Teshima, S., Sakamoto, Y., Guary, J.-C.B.: The variation of lipids and cholesterol content in the tissues of prawn,Penaeus japonicus, during the moulting cycle. Bull. Jap. Soc. Sci. Fish.42, 1003–1007 (1976)Google Scholar
  14. Kaneshiro, E.S., Beishel, L., Meyer, K., Rhoads, D.: Fatty acid composition ofParamecium aurelia. Proc. 4th Int. Congr. Protozool., New York, pp. 316 (1977)Google Scholar
  15. Korn, E.D.: Fatty acids ofAcanthamoeba sp. J. Biol. Chem.238, 3584–3587 (1963)Google Scholar
  16. Korn, E.D., Greenblatt, C.L., Lees, A.M.: Synthesis of unsaturated fatty acids in the slime moldPhysarum polycephalum and the zooflagellatesLeishmania tarentolae, Trypanosoma lewisi, andCrithidia sp.: a comparative study. J. Lipid Res.6, 43–50 (1965)Google Scholar
  17. Lautier, J., Lagarrigue, J.G.: Variations des constituants lipidiques de l'ovaire, de l'hépatopancréas et de l'hémolymphe du Crabe femellePachygrapsus marmoratus Fabricius (Décapode, Brachyoure) en fonction du cycle d'intermue. C.R. Acad. Sci. (D) (Paris)282, 645–648 (1976)Google Scholar
  18. Martin, B.J.: Contribution à l'étude de la nutrition des Crustacés Palaemoninés, à l'aide d'aliments composés, et de leur métabolisme lipidique. Thèse, Marseille 1978Google Scholar
  19. Martin, B.J., Ceccaldi, H.J.: Variations circadiennes de la teneur en acides gras libres du muscle abdominal dePalaemon serratus (Pennant, 1777)(Crustacé, Décapode). C.R. Soc. Biol. (Paris)171, 608–612 (1977)Google Scholar
  20. Martin, B.J., Vivarès, C.P., Ceccaldi, H.J.: Fatty acids and sterols of three Microsporidia parasites inCarcinus mediterraneus (Crustacea, Brachyoura) and fatty acids of their host healthy and carrying parasites. J. Am. Oil Chem. Soc.54, 148A (1977)Google Scholar
  21. Meyer, H., Holz, G.G., Jr.: Biosynthesis of lipids by kinetoplastid flagellates. J. Biol. Chem.241, 5000–5007 (1966)Google Scholar
  22. Morrison, W.R., Smith, L.M.: Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J. Lipid Res.5, 600–608 (1964)Google Scholar
  23. O'Connor, J.D., Gilbert, L.I.: Aspects of lipid metabolism in Crustaceans. Am. Zool.8, 529–539 (1968)Google Scholar
  24. Renaud, L.: Le cycle des réserves organiques chez les Crustacés Décapodes. Ann. Inst. Océanogr.24, 259–357 (1949)Google Scholar
  25. Roberts, M.D.: Fatty acids in honey bees (Apis mellifera) infected with the protozoanNosema apis. J. Invertebr. Pathol.11, 234–236 (1968)Google Scholar
  26. Robson, G.C.: The effect ofSacculina in the fat metabolism of its host. Q. J. Microsc. Soc.57, 267–278 (1911)Google Scholar
  27. Sawyer, M.K., Bischoff, J.M., Guidry, M.A., Reeves, R.E.: Lipids fromEntamoeba histolytica. Exp. Parasitol.20, 295–302 (1967)Google Scholar
  28. Schoffeniels, E.: Biochemical approaches to osmoregulatory processes in Crustacea. In: Perspectives in experimental biology, P.S. Daviers, ed., vol. 1, pp. 107–127. Oxford: Pergamon Press 1976Google Scholar
  29. Smith, G.G.: Studies in the experimental analysis of sex. 7. Sexual changes in the blood and liver ofCarcinus maenas. Q. J. Microsc. Soc.57, 251–267 (1911)Google Scholar
  30. Smith, G.G.: Studies in the experimental analysis of sex. 10. The effect ofSacculina in the storage of fat and glycogen in the formation of pigment by its host. Q. J. Microsc. Soc.59, 267–295 (1913)Google Scholar
  31. Thompson, A.C., McLaughlin, R.E.: Comparison of the lipids and fatty acids ofMattesia grandis and the fat body of the hostAnthonomus grandis. J. Invertebr. Pathol.30, 108–109 (1977)Google Scholar
  32. Venkatesan, S., Ormerod, W.E.: Lipid content of the slender and the stumpy forms ofTrypanosoma brucei rhodesiense: a comparative study. Comp. Biochem. Physiol. B53, 481–487 (1976)Google Scholar
  33. Vivarès, C.P.: Etude comparative faite en microscopies photonique et électronique de trois espèces de Microsporidies appartenant au genreThelohania Henneguy, 1892, parasites de Crustacés Décapodes marins. Ann. Sci. Nat. Zool. (Paris) 12è sér.,17, 141–178 (1975)Google Scholar
  34. Vivarès, C.P.: Grégarinoses et microsporidioses de Brachyoures (Crustacés, Décapodes) de la Méditerranée occidentale: aspects cytologiques, biochimiques et physiologiques. Thèse Etat, Montpel lier 1978Google Scholar
  35. Vivarès, C.P., Loubès, C., Bouix, G.: Recherches cytochimiques approfondies sur les Microsporidies parasites du crabe vert de la Méditerranée,Carcinus mediterraneus Czerniavsky, 1884, Ann. Parasitol. Hum. Comp.51, 1–14 (1976)Google Scholar
  36. Vivarès, C.P., Bouix, G., Manier, J.F.:Ormieresia carcini gen. n., sp. n., microsporidie du crabe mediterranéen,Carcinus mediterraneus Czerniavsky, 1884: cycle évolutif et étude ultrastructurale. J. Protozool.24, 83–94 (1977)Google Scholar
  37. Wallace, W.R., Finerty, J.F., Dimopoullos, G.T.: Studies on the lipids ofPlasmodium lophurae andPlasmodium berghei. Am. J. Trop. Med. Hyg.14, 715–718 (1965)Google Scholar
  38. Weiser, J.: Microsporidia in invertebrates: host-parasite relations at the organismal level. In: Comparative pathobiology, vol. 1, L.A. Bulla Jr. and T. C. Cheng, eds., pp. 163–201. New York: Plenum Press 1976Google Scholar
  39. Weppelman, R.M., Vandeheuvel, W.J.A., Wang, C.C.: Mass spectrometric analysis of the fatty acids and nonsaponifiable lipids ofEimeria tenella oocystes. Lipids11, 209–215 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • C. P. Vivarès
    • 1
  • B. J. Martin
    • 2
  • H. J. Ceccaldi
    • 2
  1. 1.Laboratoire de Pathologie comparée C.N.R.S. (LA 43)-E.P.H.E.Université des Sciences et Techniques du LanguedocMontpellier CedexFrance
  2. 2.Laboratoire de Biochimie et Ecologie des Invertébrés marins. Station marine d'Endoume (LA 41)Ecole Pratique des Hautes EtudesMarseilleFrance

Personalised recommendations