Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Numerical modeling of the rebound of axisymmetric rods from a rigid obstacle

  • 31 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. S. Lenskii, “On an elastoplastic impact of a rod on a rigid obstacle,” Prikl. Mat. Mekh.,13, No. 2 (1949).

  2. 2.

    Kh. A. Rakhmatulin, and Yu. A. Dem'yanov, Strength in the Case of Intense Short-Term Loads [in Russian], Fizmatgiz, Moscow (1961).

  3. 3.

    G. I. Barenblatt and A. Yu. Ishlinskii, “On the impact of a viscoplastic rod on a rigid obstacle,” Prikl. Mat. Mekh.,26, No. 3 (1962).

  4. 4.

    M. L. Wilkins and M. U. Gwinan, “Impact of a cylinder on a rigid obstacle,” Mekhanika, No. 3 (1973).

  5. 5.

    Yu. G. Korotkikh and S. M. Belevich, “Certain results of numerical investigation of the process of collision of a rod with a rigid obstacle,” in: Methods of Solution of Elasticity and Plasticity Problems [in Russian], Gor'kii (1972).

  6. 6.

    L. D. Bertolf and C. H. Karnes, “Axisymmetric elastoplastic wave propagation in 6061-T6 aluminum bars of finite length,” Trans. ASME, Ser. D, No. 3 (1969).

  7. 7.

    N. A. Beklich, V. N. Kukudzhanov, and B. M. Malyshev, “On the duration of an elastoplastic impact on a bar,” Proc. of the Fourth Symposium on Wave Propagation [in Russian], Nauka, Kishinev (1968).

  8. 8.

    N. A. Beklich, “On propagation and interaction of elastoplastic waves in a rod during an impact on an obstacle,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4 (1970).

  9. 9.

    N. A. Beklich and B. M. Malyshev, “The duration of an impact of an elastoplastic rod,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2 (1976).

  10. 10.

    V. N. Kukudzhanov, “One-dimensional problems of stress wave propagation in rods,” Tr. Vychisl. Tsentr. Akad. Nauk SSSR, No. 7 (1977).

  11. 11.

    M. L. Wilkins, “Calculation of elastoplastic flows,” in: Numerical Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).

  12. 12.

    K. P. Stanyukovich et al., Physics of Explosions [in Russian], Nauka, Moscow (1975).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 126–132, May–June, 1980.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gulidov, A.I., Fomin, V.M. Numerical modeling of the rebound of axisymmetric rods from a rigid obstacle. J Appl Mech Tech Phys 21, 392–396 (1980). https://doi.org/10.1007/BF00920779

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Numerical Modeling
  • Industrial Mathematic
  • Rigid Obstacle