Dark adaptation in glaucomatous and nonglaucomatous optic nerve atrophy

  • Jost B. Jonas
  • Frank-Michael Zäch
  • Gottfried O. H. Naumann
Clinical Investigations

Abstract

Optic nerve damage is associated with impairment of psychophysical functions. We measured dark adaptation in 21 eyes of 14 normal subjects, 35 eyes of 19 patients with primary open-angle glaucoma, and 7 eyes of 4 patients with nonglaucomatous descending optic nerve atrophy. In the normal subjects light thresholds and time of the shoulder in the dark adaptation curve increased significantly with age. In eyes with glaucomatous or nonglaucomatous optic nerve damage light sensitivity was lower than in normal eyes of age-matched control groups. Rod light sensitivity was significantly (P < 0.05) correlated with neuroretinal rim loss, parapapillary chorioretinal atrophy, and relative afferent pupillary defects. We conclude that velocity and degree of dark adaptation decrease with increasing age. Patients with glaucomatous and nonglaucomatous optic nerve atrophy show decreased light sensitivity especially in the rod part of dark adaptation worsening with advancing optic nerve damage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Airaksinen PJ, Nieminen H (1985) Retinal nerve fiber layer photography in glaucoma. Ophthalmology 92:877–879PubMedGoogle Scholar
  2. 2.
    Arden GB, Jacobson JJ (1978) A simple grading test for contrast sensitivity: preliminary results indicate value in screening for glaucoma. Invest Ophthalmol Vis Sci 17:23–32PubMedGoogle Scholar
  3. 3.
    Aubert H (1865) Physiologie der Netzhaut. Morgenstern, BreslauGoogle Scholar
  4. 4.
    Drance SM, Lakowski R, Schulzer M, Douglas GR (1981) Acquired color vision changes in glaucoma. Use of 100-hue test and Pickford anomaloscope as predictors of glaucomatous field change. Arch Ophthalmol 99:829–831PubMedGoogle Scholar
  5. 5.
    Drum B, Armaly MF, Huppert W (1986) Scotopic sensitivity loss in glaucoma. Arch Ophthalmol 104:712–717PubMedGoogle Scholar
  6. 6.
    Goldthwaite D, Lakowski R, Drance SM (1976) A study of dark adaptation in ocular hypertensives. Can J Ophthalmol 11:55–60PubMedGoogle Scholar
  7. 7.
    Hart WM (1987) Acquired dyschromatopsia. Surv Ophthalmol 32:10–31PubMedGoogle Scholar
  8. 8.
    Hecht S, Mandelbaum J (1939) The relation between vitamin A and dark adaptation. JAMA 112:1910–1916Google Scholar
  9. 9.
    Jensen W (1950) Das Normalband der Dunkeladaptation, bestimmt mit dem Riecken-Meesmann-Adaptometer. Dissertation, Faculty of Medicine, Christian-Albrechts University, KielGoogle Scholar
  10. 10.
    Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefe's Arch Clin Exp Ophthalmol 226:522–530Google Scholar
  11. 11.
    Jonas JB, Zäch F-M, Gusek GC, Naumann GOH (1989) Pseudoglaucomatous physiologic large cups. Am J Ophthalmol 107:137–144PubMedGoogle Scholar
  12. 12.
    Jonas JB, Nguyen NX, Naumann GOH (1989) The retinal nerve fiber layer in normal eyes. Ophthalmology 96:627–632PubMedGoogle Scholar
  13. 13.
    Jonas JB, Nguyen NX, Gusek GC, Naumann GOH (1989) Parapapillary chorioretinal atrophy in normal and glaucoma eyes, I. Morphometric data. Invest Ophthalmol Vis Sci 30:908–918PubMedGoogle Scholar
  14. 14.
    Jonas JB, Nguyen NX, Naumann GOH (1989) Optic disc morphometry in simple optic nerve atrophy. Acta Ophthalmol 67:199–203Google Scholar
  15. 15.
    Jonas JB, Zäch FM, Naumann (1990) Quantitative pupillometry of relative afferent defects in glaucoma. Arch Ophthalmol (in press)Google Scholar
  16. 16.
    Lakowski R, Drance SM, Goldthwaite D (1976) Chromatic extrafoveal dark adaptation function in normal and glaucomatous eyes. Mod Probl Ophthalmol 17:304–310PubMedGoogle Scholar
  17. 17.
    Lange E (1952) Untersuchung zur normalen Verteilung des Lichtsinnes in der Netzhaut und ihre Altersabhängigkeit. Graefe's Arch Clin Exp Ophthalmol 153:93–104Google Scholar
  18. 18.
    Livingtson PC (1944) Form and character of rod scotometry. Am J Ophthalmol 27:349Google Scholar
  19. 19.
    Mandelbaum J (1941) Dark adaptation. Some physiologic and clinical considerations. Arch Ophthalmol 26:203–239Google Scholar
  20. 20.
    Pitts DG (1982) Dark adaptation and aging. J Am Optom Assoc 53:37–41PubMedGoogle Scholar
  21. 21.
    Robertson GW, Yudkin J (1944) Effect of age upon dark adaptation. J Physiol 103:1–8Google Scholar
  22. 22.
    Schäfer W (1950) Über die Dunkeladaptation beim Glaukom. Dissertation, Faculty of Medicine, Christian-Albrechts University, KielGoogle Scholar
  23. 23.
    Sloan LL (1939) Instruments and technique for the clinical testing of the light sense, I. Review of the recent literature. Arch Ophthalmol 21:913Google Scholar
  24. 24.
    Sloan LL (1947) Rate of dark adaptation and regional threshold gradient of the dark adapted eye: physiologic and clinical studies. Am J Ophthalmol 30:705–720Google Scholar
  25. 25.
    Sloan LL (1950) Threshold gradients of rods and cones in dark adaptation and partially light adapted eye. Am J Ophthalmol 33:1077–1089PubMedGoogle Scholar
  26. 26.
    Waite JH, Derby GS, Kirk EB (1925) The light sense in early glaucoma. Trans Ophthalmol Soc UK 45:501Google Scholar
  27. 27.
    Zuege P, Drance SM (1967) Studies of dark adaptation of discrete paracentral retinal areas in glaucomatous subjects. Am J Ophthalmol 64:56–63PubMedGoogle Scholar
  28. 28.
    Zuege P, Drance SM (1967) Studies of dark adaptation of discrete paracentral areas. Can J Ophthalmol 2:30PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jost B. Jonas
    • 1
  • Frank-Michael Zäch
    • 1
  • Gottfried O. H. Naumann
    • 1
  1. 1.Augenklinik der Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations