Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of niflumic acid on polyphosphoinositide and oxidative metabolism in polymorphonuclear leukocytes from healthy and thermally injured rats

  • 23 Accesses

  • 6 Citations

Abstract

Thermal injury in rats leads to an impairment of polymorphonuclear leukocyte (PMN) functions, particularly oxidative metabolism and phosphoinositide turnover. As prostaglandin E2, which has immunosuppressive properties, is released in high levels after burn trauma, we investigated the in vitro and in vivo effects of a nonsteroidal antiinflammatory drug, niflumic acid, on oxidative and phosphoinositide metabolism in PMNs from healthy and burned rats. Given the role of fluoride ions on PMN, the influence of niflumic acid was compared with that of sodium fluoride (NaF) at equivalent doses of F. In vitro, niflumic acid and sodium fluoride had no effect on oxidative metabolism in stimulated by formyl methionyl-leucyl-phenylalanine (FMLP) or opsonized zymosan (OZ) or nonstimulated PMNs from healthy and burned rats. Niflumic acid slightly increased the production of inositol phosphate by nonstimulated PMNs from healthy and burned rats. Niflumic acid and NaF partly restored the stimulating effect of FMLP on inositol phosphate production by PMNs from burned rats. In vivo treatment with niflumic acid and NaF increased the oxidative metabolism of PMNs from burned rats but not healthy rats. Niflumic acid, more than NaF, restored the activity of both stimulants on phosphoinositide metabolism in PMNs from burned rats. In conclusion, at non-antiinflammatory doses, while inhibiting cyclooxygenase activity, niflumic acid exerts a complex effect on the burn-induced depression of PMN functions. The fluoride anion induces similar but generally weaker effects and seems to be involved in the restoring effects of niflumic acid on PMN functions in burned rats.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Miller, C. 1981. The immune response to burn injury.J. Trauma 21:677–679.

  2. 2.

    Bjerkness, R., H. Vindeness, Y. Pitkanen, J. Ninnemann, O. Laerum, andF. Abyholm. 1989. Altered polymorphonuclear neutrophilic granulocyte functions in patients with large burns.J. Trauma 29:847–855.

  3. 3.

    Bjornson, A. B., H. S. Bjornson, R. W. Knippenberg, andJ. S. Cardone. 1986. Temporal relationships among immunologic alterations in a guinea pig model of thermal injury.J. Infect. Dis. 153:1098–1107.

  4. 4.

    Bjornson, A. B., R. W. Knippenberg, andH. S. Bjornson. 1989. Bactericidal defect of neutrophils in a guinea pig model of thermal injury is related to elevation of intracellular cyclic-3′,5′-adenosine monophosphate.J. Immunol. 143:2609–2616.

  5. 5.

    Goodwin, J. S., andD. R. Webb. 1980. Regulation of the immune response by prostaglandins.Clin. Immunol. Immunopathol. 15:106–122.

  6. 6.

    Kunkel, S. L., H. Oggawa, P. G. Conran, P. A. Ward andR. B. Zurier. 1981. Suppression of acute and chronic inflammation by orally administered prostaglandins.Arthritis Rheum. 13:1151–1158.

  7. 7.

    Goodwin, J. S. 1991. Are prostaglandins proinflammatory, antiinflammatory, both or neither?J. Rheumatol. 18(Suppl. 28):26–29.

  8. 8.

    Bjornson, A. B., R. W. Knippenberg, andH. S. Bjornson. 1988. Nonsteroidal anti-inflammatory drugs correct the bactericidal defect of polymorphonuclear leukocytes in a guinea pig model of thermal injury.J. Infect. Dis. 157:959–967.

  9. 9.

    Goodwin, J. S., andJ. Ceuppens. 1983. Regulation of the immune response by prostaglandins.J. Clin. Immunol. 3:295–315.

  10. 10.

    Florentin, I., J. Maral, M. De Sousa, M. Berardet, F. Hertz, andA. Cloarec. 1989. Modulation of immune responses in mice by oral administration of niflumic acid.Int. J. Immu-nopharmacol. 11:173–183.

  11. 11.

    Roch-Arveiller, M., J. Fontagne, A. El Abbouyi, D. Raichvarg, andJ. P. Giroud. 1991. Effect of an immunomodulating agent, RU 41740, on polymorphonuclear responsiveness after burn injury.Inflammation 15:437–445.

  12. 12.

    Tissot, M., J. Mathieu, L. Mirossay, A. Thuret andJ. P. Giroud. 1991. Polyphospho-inositide metabolism in polymorphonuclear cells from healthy and thermally injured rats. Effect of the immunomodulator RU 41740.J. Leuk. Biol. 50:607–614.

  13. 13.

    English, D., M. T. Rizzo, G. Tricot, andR. Hoffman. 1989. Involvement of guanine nucleotides in superoxide release by fluoride-treated neutrophils. Implications for a role of a guanine nucleotide regulatory protein.J. Immunol. 143:1685–1691.

  14. 14.

    Blackmore, P. F., S. B. Bocckino, L. E. Waynick, andJ. H. Exton. 1985. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidyl-inositol 4,5-bisphosphate by calcium mobilizing hormones and the control of cell calcium. Studies using aluminium fluoride.J. Biol. Chem. 260:14477–14483.

  15. 15.

    Walker, H. L., andA. D. Mason. 1968. Standard animal bum.J. Trauma 8:1049–1051.

  16. 16.

    Giroud, J. P., M. Roch-Arveiller, andO. Muntaner. 1976. Prélèvement répété des polynucléaires dans la cavité pleurale: Application à l'étude du chimiotactisme.Nouv. Rev. Fr. Hematol. 20:535–543.

  17. 17.

    Downes, C. P., andR. H. Michell. 1981. The polyphosphoinositide phosphodiesterase of erythrocyte membranes.Biochem. J. 198:133–140.

  18. 18.

    Berridge, M. J., R. M. C. Dawson, C. P. Downes, J. P. Heslop, andR. F. Irvine. 1983. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides.Biochem. J. 212:473–482.

  19. 19.

    Creba, J. A., C. P. Downes, P. T. Hawkins, G. Brewster, R. H. Michell, andC. J. Kirk. 1983. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bis-phosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones.Biochem. J. 212:733–747.

  20. 20.

    Johnston, R., B. B. Kell, H. P. Misra, J. E. Lehmeyer, L. S. Webb, R. L. Baehner, andK. V. Rajacopalan. 1975. The role of superoxide anion generation on phagocytotic bacterial activity.J. Clin. Invest. 55:1357–1372.

  21. 21.

    Allen, R. C., R. L. Stjernholm, andR. Steele. 1972. Evidence for the generation of an excitation electronic state(s) in human polymorphonuclear leukocyte and its participation in bactericidal activity.Biochem. Biophys. Res. Commun. 47:679–684.

  22. 22.

    Roch-Arveiller, M., D. Pham Huy, L. Maman, J. P. Giroud, andJ. R. Sorenson. 1990. Non-steroidal anti-inflammatory drug-copper complex modulation of polymorphonuclear leukocyte migration.Biochem. Pharmacol. 39:569–574.

  23. 23.

    Abramson, S. B., J. Leszczynska-Piziak, K. Haines, andJ. Reibman. 1991. Non-steroidal anti-inflammatory drugs: Effects on a GTP binding protein within the neutrophil plasma membrane.Biochem. Pharmacol. 41:1567–1573.

  24. 24.

    Smith, C. D., B. C. Lane, I. Kusuka, M. W. Verghese, andR. Snyderman. 1985. Chemoattractant-receptor induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes: Requirement for a guanine nucleotide regulatory protein.J. Biol. Chem. 260:5875–5878.

  25. 25.

    Curnutte, J. T., B. M. Babior, andM. L. Karnovsky. 1979. Fluoride-mediated activation of the respiratory burst in human neutrophils: A reversible process.J. Clin. Invest. 63:637–647.

  26. 26.

    English, D., D. J. Debono, andT. G. Gabig. 1987. Relationship of phosphatidylinositol bisphosphate hydrolysis to calcium mobilisation and functional activation in fluoride-treated neutrophils.J. Clin. Invest. 80:145–153.

  27. 27.

    Della Bianca, V., M. Grzeskowiak, S. Dusi, andF. Rossi. 1988. Fluoride can activate the respiratory burst independently of Ca2+, stimulation of phosphoinositide turnover and protein kinase C translocation in primed human neutrophils.Biochem. Biophys. Res. Commun. 150:955–964.

  28. 28.

    Chiba, T., A. Nakamura, T. Yamatani, andT. Fujita. 1991. Activation of protein kinase C inhibits NaF-induced inositolphospholipid turnover in isolated canine parietal cells.Biomed. Res. 12:1–5.

  29. 29.

    Brom, C., J. Brom, andW. Konig. 1991. G protein activation and mediator release from human neutrophils and platelets after stimulation with sodium fluoride and receptor-mediated stimuli.Immunology 73:287–292.

  30. 30.

    Bengtsson, T., E. Sarndahl, O. Stendahl, andT. Andersson. 1990. Involvement of GTP-binding proteins in actin polymerisation in human neutrophils.Proc. Natl. Acad. Sci. U.S.A. 87:2921–2925.

  31. 31.

    Jeremy, J. Y., andP. Dandona. 1988. Fluoride stimulates in vitro vascular prostacyclin synthesis: interrelationship of G proteins and protein kinase C.Eur. J. Pharmacol. 146:279–284.

  32. 32.

    Bokoch, G. M., andA. G. Gilman. 1984. Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin.Cell 39:301–308.

  33. 33.

    English, D., andG. S. Taylor. 1991. Divergent effects of propranolol on neutrophil super-oxide release: Involvement of phosphatidic acid and diacylglycerol as second messengers.Biochem. Biophys. Res. Commun. 175:423–429.

  34. 34.

    Hall, I. P., J. Donaldson, andS. J. Hill. 1990. Modulation of fluoroaluminate-induced inositol phosphate formation by increases in tissue cyclic AMP content in bovine trachéal smooth muscle.Br. J. Pharmacol. 100:646–650.

  35. 35.

    Laurent, E., J. Mocke, K. Takazawa, C. Erneux, andJ. E. Dumont. 1989. Stimulation of generation of inositol phosphates by carbamoylcholine and its inhibition by phorbol esters and iodine in dog thyroid cells.Biochem. J. 263:795–801.

  36. 36.

    Habara, Y., Y. Satoh, T. Saito, andT. Kanno. 1990. A G-protein activator, NaF, induces (Ca2+)o-dependent (Ca2+)c oscillation and secretory response in rat pancreatic acini.Biomed. Res. 11:389–398.

  37. 37.

    Bromberg, Y., and E. Pick. 1983. Unsaturated fatty acids as second messengers of superoxide generation by macrophages.Cell Immunol. 15:240–252.

  38. 38.

    Gadd, M. A., andJ. F. Hansbrough. 1990. Postburn suppression of murine lymphocyte and neutrophil functions is not reversed by prostaglandin blockade.J. Surg. Res. 48:84–90.

  39. 39.

    Davis, J. M., andJ. I. Gallin. 1988. Abnormal rabbit heterophil chemotaxis following injury.Arch. Surg. 123:752–755.

  40. 40.

    Okada, K., andE. J. Brown. 1988. Sodium fluoride reveals multiple pathways for regulation of surface expression of the C3b/C4b receptors (CR1) on human polymorphonuclear leukocytes.J. Immunol. 140:878–884.

  41. 41.

    Tiger, G., P. E. Björklund, G. Brännström, andC. J. Fowler. 1990. Multiple actions of fluoride ions upon the phosphoinositide cycle in the rat brain.Brain Res. 537:93–101.

  42. 42.

    Toper, R., A. Aviram, andI. Aviram. 1987. Fluoride-mediated activation of guinea pig neutrophils.Biochim. Biophys. Acta 931:262–266.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tissot, M., Roch-Arveiller, M., Fontagne, J. et al. Effects of niflumic acid on polyphosphoinositide and oxidative metabolism in polymorphonuclear leukocytes from healthy and thermally injured rats. Inflammation 16, 645–657 (1992). https://doi.org/10.1007/BF00919347

Download citation

Keywords

  • Oxidative Metabolism
  • Polymorphonuclear Leukocyte
  • Thermal Injury
  • Formyl
  • Inositol Phosphate