Advertisement

Inflammation

, Volume 16, Issue 6, pp 587–601 | Cite as

Effects of interleukin-1β and tumor necrosis factor-α on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro

  • Russell S. Taichman
  • Peter V. Hauschka
Original Articles

Abstract

Osteoblasts play a pivotal role during the bioresponse of bone to agents that stimulate bone resorption and/or inhibit bone formation including hormones, polypeptide growth factors, and cytokines. We examined the cytokines interleukin-1-beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) for their effects on osteoblastic proliferation and development and expression of alkaline phosphatase and the osteoblast-specific protein osteocalcin in a mineralizing environment. Primary rat osteoblast-like cells (ROB) and osteoblastic cell lines derived from rat (ROS 17/2.8) and human (MG-63) osteosarcomas were studied. IL-1β and TNF-α were chosen because of their critical importance during the host response to local inflammatory stimuli. Qualitatively similar two- to threefold inhibition of osteocalcin synthesis by IL-1β and TNF-α were observed in all three postconfluent bone-forming model systems. Because of the readily measurable concentrations of osteocalcin produced in our culture protocol, it was not necessary to enhance osteoblastic synthesis of osteocalcin by supplementation with 1,25(OH)2-vitamin D3, a treatment which exerts pleiotropic effects on osteoblasts. Under the constraints of our protocol, where alkaline phosphatase and mineralization were already elevated at the 14-day onset of treatment, neither of these phenotypic properties was sensitive to a three-day cytokine exposure. Differences were noted in proliferation, where only TNF-α stimulated DNA synthesis in ROB cells, while both cytokines stimulated MG-63 cells. IL-1β and TNF-α failed to alter ROS 17/2.8 DNA synthesis except at the highest doses (25 pM IL-1β and l nM TNF-α) where inhibition was observed. These results further support the view that cytokine-mediated osteoblastic regulation can be relatively selective.

Keywords

Osteosarcoma Osteocalcin Osteoblastic Proliferation Osteoblastic Cell Line Stimulate Bone Resorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beresford, J. N., J. A. Gallagher, M. Gowen, M. Couch, J. Poser, D. D. Wood, andR. G. G. Russell. 1984. The effects of monocyte-conditioned medium and interleukin 1 on the synthesis of collagenous and noncollagenous proteins by mouse bone and human bone cells in vitro.Biochim. Biophys. Acta 804:58–65.Google Scholar
  2. 2.
    Bertolini, D. R., G. E. Nedwin, T. S. Bringman, D. D. Smith, andG. R. Mundy. 1986. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors.Nature 319:516–518.Google Scholar
  3. 3.
    Gowen, M., D. D. Wood, E. J. Ibrie, M. K. B. McGuire, andR. G. G. Russell. 1983. An interleukin 1-like factor stimulates bone resorption in vitro.Nature 306:378.Google Scholar
  4. 4.
    Goldring, S. R., M. S. Flannery, T. Harris, P. L. Killian, K. L. Kaffka, andM. B. Goldring. 1988. Biologic effects of IL-1 on human osteoblast-like cells are mediated by specific receptors.J. Bone Mineral Res. 4:S257.Google Scholar
  5. 5.
    Rodan, S. B., G. Wesolowski, C. Jayne, G. A. Limjuco, J. A. Schmidt, andG. A. Rodan. 1990. IL-1 binds to high affinity receptors on human osteosarcoma cells and potentiates prostaglandin E2 stimulation of cAMP production.J. Immunol. 145:1231–1237.Google Scholar
  6. 6.
    Dinarello, C. A., andN. Savage. 1989. Interleukin-1 and its receptor.Crit. Rev. Immunol. 9:1–20.Google Scholar
  7. 7.
    Rosenblum, M. G., andN. J. Donato. 1989. Tumor necrosis factor-alpha: A multifaceted peptide hormone.Crit. Rev. Immunol. 9:21–44.Google Scholar
  8. 8.
    Marks, S. C., andS. N. Popoff. 1988. Bone cell biology: The regulation of development, structure, and function in the skeleton.Am. J. Anal. 183:1–44.Google Scholar
  9. 9.
    Canalis, E. 1987. Effects of tumor necrosis factor on bone formation in vitro.Endocrinology 121:1596–1604.Google Scholar
  10. 10.
    Ikeda, E., M. Kusaka, Y. Hakeda, K. Yokota, M. Kumegawa, andS. Yamamoto. 1988. Effect of interleukin 1 beta on osteoblastic clone MC3T3-E1 cells.Calcif. Tissue Int. 43:162–166.Google Scholar
  11. 11.
    Evans, D. B., R. A. D. Bunning, andR. G. G. Russell. 1990. The effects of recombinant human interleukin-1/β on cellular proliferation and the production of prostaglandin E2, plasminogen activator, osteocalcin and alkaline phophatase by osteoblast-like cells derived from human bone.Biochem. Biophys. Res. Commun. 166:206–216.Google Scholar
  12. 12.
    Evans, D. B., M. Thavarjah, andJ. A. Kamis. 1990. Involvement of prostaglandin E2 in the inhibition of osteocalcin synthesis by human osteoblast-like cells in response to cytokines and systemic hormones.Biochem. Biophys. Res. Commun. 167:194–202.Google Scholar
  13. 13.
    Nanes, M. S., W. M. McKoy, andS. J. Marx. 1989. Inhibitory effects of tumor necrosis factor-alpha and interferon-gamma on deoxyribonucleic acid and collagen synthesis by rat osteosarcoma cells (ROS 17/2.8).Endocrinology 124:339–345.Google Scholar
  14. 14.
    Stashenko, P., M. S. Obernesser, andF. E. Dewhirst. 1989. Effects of immune cytokines on bone.Immunol. Invest. 18:239–249.Google Scholar
  15. 15.
    Ohmori, Y., S. Hanazawa, S. Amano, K. Hirose, M. Kumegawa, andS. Kitano. 1989. Effects of recombinant interleukin 1α and interleukin 1β on cell growth and alkaline phosphatase of the mouse osteoblastic cell line MC3T3-E1.Biochem. Biophys. Res. Commun. 970:22–30.Google Scholar
  16. 16.
    Stashenko, P., F. E. Dewhirst, W. J. Peros, R. L. Kent, andJ. M. Ago. 1987. Synergistic interactions between interleukin-1, tumor necrosis factor, and lymphotoxin in bone resorption.J. Immunol. 138:1464–3468.Google Scholar
  17. 17.
    Thompson, B. M., J. Saklatvala, T. J. Chambers. 1986. Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteocalasts.J. Exp. Med. 146:104–112.Google Scholar
  18. 18.
    Thompson, B. M., G. R. Mundy, andT. J. Chambers. 1987. Tumor necrosis factors alpha and beta induce osteoblasts to stimulate osteocalstic bone resorption.J. Immunol. 138:775–779.Google Scholar
  19. 19.
    Rodan Gam Martin, T. J. 1981. Role of osteoblast in hormonal control of bone resorption —a hypothesis.Calcif. Tissue Int. 33:349–351.Google Scholar
  20. 20.
    Hauschka, P. V., J. B. Lian, D. E. C. Cole, andC. M. Gundburg. 1989. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins of bone.Physiol. Rev. 69:990–1047.Google Scholar
  21. 21.
    Hauschka, P. V., andF. H. Wians, Jr. 1989. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone.Anat. Rec. 69:990–1047.Google Scholar
  22. 22.
    Malone, J. D. S., S. L. Teitelbaum, G. L. Griffin, R. M. Senior, andA. J. Kahn. 1982. Recruitment of osteocalcast precursors by purified bone matrix constituants.J. Cell Biol. 92:227–235.Google Scholar
  23. 23.
    Glowacki, J., andJ. B. Lian. 1987. Impaired recruitment and differentiation of osteocalast progenitors by osteocalcin deplete bone implants.Cell Differ. 21:247–254.Google Scholar
  24. 24.
    Webber, D., P. Osdoby, P. Hauschka, andM. Krukowski. 1990. Correlation of an osteoclast antigen and raffled border on giant cells formed in response to resorbable substrates.J. Bone Mineral Res. 5:401–410.Google Scholar
  25. 25.
    Hauschka, P. V., andM. L. Reid. 1987. Timed appearance of a calcium-binding protein containing gamma-carboxyglutamic acid in developing chicken bone.Dev. Biol. 122:49–60.Google Scholar
  26. 26.
    Gerstenfeld, L. C., S. D. Chipman, J. Golwacki, andJ. B. Lian. 1987. Expression of differentiated function by mineralizing cultures of chicken osteoblasts.Dev. Biol. 122:49–60.Google Scholar
  27. 27.
    Hauschka, P. V., T. L. Chen, andA. E. Mavrakos. 1988. Polypeptide growth factors in bone matrix.In Cell and Molecular Biology of Vertebrate Hard Tissues. CIBA Foundation Symposium 136, Wiley, New York. 103–125.Google Scholar
  28. 28.
    Gowen, M., D. E. Huges, andR. G. G. Russell. 1988. Tumor necrosis factor (TNF): An autocrine and paracrine regulator of bone metabolism.J. Bone Mineral Res. 42:S122.Google Scholar
  29. 29.
    Gowen, M., B. R. M. McDonald, R. G. G. Russell. 1988. Actions of recombinant human gamma interferon and TNF-alpha on the proliferation and osteoblast characteristics of human trabecular bone cells in vitro.Arthritis Rheum. 31:1500–1507.Google Scholar
  30. 30.
    Gowen, M., K. Chapman, A. Littlewood, D. Hughes, D. Evans, andR. G. G. Russell. 1990. Production of TNF by human osteoblasts is modulated by other cytokines, but not by osteopetrotic hormones.Endocrinology 126:1250–1255.Google Scholar
  31. 31.
    Evans, D. B., R. A. D. Bunning, J. Vandamme, andR. G. G. Russell. 1989. Natural human IL-1β exhibits regulatory actions on human bone-derived cells in vitro.Biochem. Biophys. Res. Commun. 159:1242–1248.Google Scholar
  32. 32.
    Aronow, M. A., L. C. Gerstenfeld, T. A. Owen, M. S. Tassinari, G. S. Stein, andJ. B. Lian. 1990. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells.J. Cell. Physiol. 143:213–221.Google Scholar
  33. 33.
    Kawano, M., I. Yamamoto, K. Iwato, H. Tanaka Hm Asaoku, O. Tanabe, H. Ishikawa, M. Nobuyoshi, Y. Ohmoto, Y. Hirai, andA. Kuramoto. 1989. Interleukin-1 beta rather than lymphotoxin as the major bone resorbing activity in human multiple myeloma.Blood 73:1646–1649.Google Scholar
  34. 34.
    Cohn, D. V., andG. Wong. 1975. Target cells in bone for parathyroid hormone and calcitonin are different. Enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces.Proc. Natl. Acad. Sci. U.S.A. 72:3167–3171.Google Scholar
  35. 35.
    Gundburg, C. M., P. V. Hauschka, J. B. Lian, andP. M. Gallop. 1984. Osteocalcin: Isolation, characterization, and detection.Methods Enzymol. 107:516–544.Google Scholar
  36. 36.
    Vytasek, R. 1982. A sensitive fluorometric assay for the determination of DNA.Anal. Biochem. 48:242–248.Google Scholar
  37. 37.
    Bellows, C. G., J. E. Aubin, J. N. M. Heersche, andM. E. Antosz. 1986. Mineralized nodules formed in vitro from enzymatically released rat calvarial cell populations.Calcif. Tissue Int. 38:143–154.Google Scholar
  38. 38.
    Reddi, A. H., andC. B. Huggins. 1972. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats.Proc. Natl. Acad. Sci. U.S.A. 69:1601–1604.Google Scholar
  39. 39.
    Sambrook, J., E. F. Fritsch, andT. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  40. 40.
    Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl. Acad. Sci. U.S.A. 77:5201.Google Scholar
  41. 41.
    Celeste, A. J., V. Rosen, L. J. Buecker, R. Kriz, E. A. Wang, andJ. M. Wozney. 1986. Isolation of the human gene for bone Gla protein utilizing mouse and rat cDNA clones.EMBO J. 5:1855–1859.Google Scholar
  42. 42.
    Feinberg, A. P., andB. Vogelstein. 1983. A technique for radiolabling DNA restriction endonuclease fragments to a high specific activity.Anal. Biochem. 132:6–13.Google Scholar
  43. 43.
    Dewhirst, F. E., P. P. Stashenko, J. E. Mole, andT. Tsurumachi. 1985. Purification and partial sequence of human osteocalcast activating factor: Identity with interleukin-1 beta.J. Immunol. 135:2562–2586.Google Scholar
  44. 44.
    Nanes, M. S., J. M. Rubin, G. Titus, G. Hendy, andB. D. Catherwood. 1990. Tumor necrosis factor-alpha inhibits bone Gla protein synthesis by pre- and post-translational elements.J. Bone Mineral Res. 5:S153.Google Scholar
  45. 45.
    Schule, R., K. Unesono, D. J. Mangelsdorf, J. Bolafo, J. W. Pike, andR. M. Evans. 1990. Jun-fos and receptors of vitamin A and D recognize a common response element in the human osteocalcin gene.Cell. 61:497–504.Google Scholar
  46. 46.
    Hauschka, P. V. 1990. Growth factor effects in bone.In Bone: A Treatise, The Osteoblast and the Osteocyte, Vol. 1. B. K. Hall, editor. Telford Press, Caldwell, New Jersey. 103–170.Google Scholar
  47. 47.
    Stein, G. S., J. B. Lian, andT. A. Owen. 1990. Relationship of growth to the regulation of tissue-specific gene expression during osteoblast differentiation.FASEB J. 4:3111–3123.Google Scholar
  48. 48.
    Lian, J. B., C. Stewart, E. Pucacz, M. Mackowiak, V. Shalhoub, D. Collart, G. Zambetti, andG. Siein. 1989. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression.Proc. Natl. Acad. Sci. U.S.A. 86:1143–1147.Google Scholar
  49. 49.
    Muegge, K., T. M. Williams, J. Kant, M. Karin, R. Chiu, A. Schmidt, U. Siebenlist, H. A. Young, andS. K. Durum. 1989. Interleukin-1 costimulatory activity in the interleukin-2 promotor via AP-1.Science 246:249–251.Google Scholar
  50. 50.
    Brenner, D. A. A., M. O'Hara, P. Angel, M. Chojkier, andM. Karin. 1989. Prolonged action of jun and collagerase genes by TNF-α.Nature 337:661–664.Google Scholar
  51. 51.
    Taichman, R. S. 1990. Polyctokine modulation of bone metabolism: The effects of IFN-gamma on IL-1 beta and TNF-alpha inhibition of osteocalcin synthesis. Boston, Massachusetts. Harvard School of Dental Medicine. Dissertation. 176 pp.Google Scholar
  52. 52.
    Stashenko, P., F. E. Dewhirst, M. L. Rooney, L. A. Desjardins, andJ. D. Heeley. 1987. Interleukin-1-beta is a potent inhibitor of bone formation.J. Bone Mineral Res. 2:559–565.Google Scholar
  53. 53.
    Hughes, D. E., M. Gowen, andR. G. G. Russell. 1988. Interleukin 1 as a paracrine factor in bone: Effects on osteocalast-like cell formation and production by osteoblast-like cells.J. Bone Mineral Res. 3:S196.Google Scholar
  54. 54.
    Nishihara, T., Y. Ishihara, T. Noguchi, andT. Koga. 1989. Membrane IL-1 induced bone resorption in organ culture.J. Immunol. 143:1881–1886.Google Scholar
  55. 55.
    Feyen, J. H. M., P. Elsford, F. E. Di Padova, andU. Trechsel. 1989. Interleukin-6 is produced by bone and modulated by parathyroid hormone.J. Bone Mineral Res. 4:633–638.Google Scholar
  56. 56.
    Shen, V., G. Kohler, J. J. Jeffery, andW. A. Peck. 1988. Bone-resorbing agents promote and interferon-gamma inhibits bone cell collagenase production.J. Bone Mineral Res. 3:65–66.Google Scholar
  57. 57.
    Littlewood, A. J., L. A. Aarden, D. B. Evan, R. G. G. Russell, andM. Gowen. 1991. Human osteoblastlike cells do not respond to interleukin-6.J. Bone Mineral Res. 6:141–148.Google Scholar
  58. 58.
    Hanazawa, S., Y. Ohmori, S. Amano, K. Hirose, T. Miyoshi, M. Kumegawa, andS. Kitano. 1985. Spontaneous production of interleukin-1-like cytokine from a mouse osteoblastic cell line (MC3T3-E1).Biochem. Biophys. Res. Commun. 131:774–779.Google Scholar
  59. 59.
    Washington, L., D. L. Coleman, T. A. Einhorn, andM. Horowitz. 1988. Retinods regulate murine osteoblast colony stimulating factor secretion.J. Bone Mineral Res. 3:S223.Google Scholar
  60. 60.
    Horowitz, M. C., D. L. Coleman, J. T. Ryaby, andT. A. Einhorn. 1989. Osteotropic agents induce the differential secretion of granulocyte-macrophage colony-stimulating factor by the osteoblast cell line MC3T3-E1.J. Bone Mineral Res. 4:911–921.Google Scholar
  61. 61.
    Skjodt, H., T. Moller, AndS. F. Freiesleben. 1989. Human osteoblast-like cells expressing MHC class II determinants stimulate allogeneic and autologous peripheral blood mononuclear cells and functional as antigen-presenting cells.Immunology 68:416–420.Google Scholar
  62. 62.
    Centrella, M., andE. Canalis. 1985. Transforming and nontransforming growth factors are present in medium conditioned by fetal rat calvaria.Proc. Natl. Acad. Sci. U.S.A. 82:7335–7339.Google Scholar
  63. 63.
    Canalis, E., T. McCarthy, andM. Centrella. 1988. Growth factors and the regulation of bone remodeling.J. Clin. Invest. 81:227–281.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Russell S. Taichman
    • 1
    • 3
  • Peter V. Hauschka
    • 2
    • 3
  1. 1.Department of PeriodontologyHarvard School of Dental MedicineBoston
  2. 2.Department of Oral BiologyHarvard School of Dental MedicineBoston
  3. 3.Department of Orthopaedic SurgeryThe Children's Hospital CorporationBoston

Personalised recommendations