Journal of Clinical Immunology

, Volume 12, Issue 4, pp 239–247 | Cite as

Biological properties of interleukin 10

  • Maureen Howard
  • Anne O'Garra
  • Hiroshi Ishida
  • René de Waal Malefyt
  • Jan De Vries
Special Article


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fiorentino DF, Bond MW, Mosmann TR: Two types of mouse helper T cell. IV. Th2 clones secrete a factor that inhibits cytokine production byTh1 clones. J Exp Med 170:2081–2095, 1989PubMedGoogle Scholar
  2. 2.
    Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR: Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein Barr virus gene BCRFI. Science 248:1230–1234, 1990PubMedGoogle Scholar
  3. 3.
    Vieira P, de Waal-Malefyt R, Dang MN, Johnson KE, Kastelein R, Fiorentino DF, deVries JE, Roncarolo MG, Mosmann TR, Moore KW: Isolation and expression of human cytokine synthesis inhibitory factor (CSIF/IL10) cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA 88:1172–1176, 1991PubMedGoogle Scholar
  4. 4.
    Hsu DH, de Waal Malefyt R, Fiorentino DF, Dang MN, Vieira P, de Vries J, Spits H, Mosmann TR, Moore KW: Expression of IL-10 activity by Epstein-Barr virus protéin BCRFI. Science 250:830–832, 1990PubMedGoogle Scholar
  5. 5.
    Mosmann TR, Schumacher J, Fiorentino DF, Leverah J, Moore KW, Bond MW: Isolation of monoclonal antibodies specific for IL4, IL5, IL6, and a new Th2-specific cytokine (IL-10), cytokine synthesis inhibitory factor, by using a solid phase radioimmunoadsorbent assay. J Immunol 145:2938–2945, 1990PubMedGoogle Scholar
  6. 6.
    Suda T, O'Garra A, MacNeil I, Fischer M, Bond M, Zlotnik A: Identification of a novel thymocyte growth promoting factor derived from B cell lymphomas. Cell Immunol 129:228–240, 1990PubMedGoogle Scholar
  7. 7.
    MacNeil I, Suda T, Moore KW, Mosmann TR, Zlotnik A: IL-10: A novel cytokine growth cofactor for mature and immature T cells. J Immunol 145:4167–4173, 1990PubMedGoogle Scholar
  8. 8.
    O'Garra A, Stapleton G, Dhar V, Pearce M, Schumacher J, Rugo H, Barbis D, Stall A, Cupp J, Moore K, Vieira P, Mosmann T, Whitmore A, Arnold L, Haughton G, Howard M: Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int Immunol 2:821–832, 1990PubMedGoogle Scholar
  9. 9.
    Thompson-Snipes L, Dhar V, Bond MW, Mosmann TR, Moore KW, Rennick D: Interleukin-10: A novel stimulatory factor for mast cells and their progenitors. J Exp Med 173:507–510, 1991PubMedGoogle Scholar
  10. 10.
    Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR, Moore KW, Howard M: Interleukin 10 (IL-10), a novel B cell stimulatory factor: Unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172:1625–1631, 1990PubMedGoogle Scholar
  11. 11.
    de Waal Malefyt R, Haanen J, Yssel H, Roncarolo MG, te Velde A, Figdor C, Johnson K, Kastelein R, Spits H, de Vries JE: IL-10 and v-IL-10 strongly reduce antigen specific human T cell responses by diminishing the antigen presenting capacity of monocytes via down-regulation of class II MHC expression. J Exp Med 174:915–924, 1991PubMedGoogle Scholar
  12. 12.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor C, de Vries JE: IL-10 inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220, 1991PubMedGoogle Scholar
  13. 13.
    Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O'Garra A: IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146:3444–3451, 1991PubMedGoogle Scholar
  14. 14.
    Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A: IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815–3822, 1991PubMedGoogle Scholar
  15. 15.
    Zlotnik A, Moore KW: Interleukin 10. Cytokines 3:366–371, 1991Google Scholar
  16. 16.
    Chen WF, Zlotnik A: Interleukin 10: A novel cytotoxic T cell differentiation factor. J Immunol 147:528–534, 1990Google Scholar
  17. 17.
    O'Garra A, Chang R, Hastings R, Go N, Haughton G, Howard M: Ly1 B (B-1) cells are the main source of B-cell derived IL-10. Eur J Immunol 22:711–717, 1992PubMedGoogle Scholar
  18. 18.
    Mosmann TR, Coffman RL: Heterogeneity of cytokine secretion patterns and functions of helper T cells.In Adv. Immunol., FJ Dixon, KF Austen, LE Hood, JW Uhr (eds), San Diego, Academic Press, 1989, pp 111–147Google Scholar
  19. 19.
    Hsu DH, Moore KW, Spits H: Differential effects of interleukin-4 and -10 on interleukin-2-induced interferon-γ synthesis and lymphokine-activated killer activity. Int Immunol (in press)Google Scholar
  20. 20.
    Dunn DE, Jin J, Lancki DW, Fitch FW: An alternative pathway of induction of lymphokine production by T lymphocyte clones. J Immunol 142:3847–3856, 1989PubMedGoogle Scholar
  21. 21.
    Bancroft GJ, Webster G: Regulation of IFN-γ synthesis by natural killer cells: Differential effects of Th1 (IL-2) and Th2 (IL-10) derived cytokines (submitted for publication)Google Scholar
  22. 22.
    Steinman RM, Nussenzweig MC: Dendritic cells: Features and functions. Immunol Rev 53:128–147, 1980Google Scholar
  23. 23.
    Bogdan C, Vodovotz Y, Nathan C: Macrophage deactivation by interleukin-10. J Exp Med 174:1549–1555, 1991PubMedGoogle Scholar
  24. 24.
    Ralph P, Nakoinz I, Sampson-Johannes A, Fong S, Lowe D, Min HY, Lin L: IL-10, T lymphocyte inhibitor of human blood cell production of IL-1 and tumor necrosis factor. J Immunol 148:808–814, 1992PubMedGoogle Scholar
  25. 25.
    Gazzinelli RT, Oswald IP, James SL, Sher A: IL-10 inhibits parasite killing and nitric oxide production by IFN-γ activated macrophages. J Immunol 148:1792–1796, 1992PubMedGoogle Scholar
  26. 26.
    Oswald IP, Gazzinelli RT, Sher A, James SL: IL-10 synergizes with IL-4 and TGF-β to inhibit macrophage cytotoxic activity. J Immunol (in press)Google Scholar
  27. 27.
    Sher A, Fiorentino D, Caspar P, Pearce E, Mosmann T: Production of IL-10 by CD4 T lymphocytes correlates with down-regulation of Th1 cytokine synthesis in helminth infection. J Immunol 147:2713–2716, 1992Google Scholar
  28. 28.
    Hodgkin P, Go N, Cupp J, Howard M: Interleukin-4 enhances anti-IgM stimulation of B cells by improving cell viability and by increasing the sensitivity of B cells to the anti-IgM signal. Cell Immunol (in press)Google Scholar
  29. 29.
    Roehm NW, Leibson HJ, Zlotnik A, Kappler J, Marrack P, Cambier JC: Interleukin-4-induced increase in Ia expression by normal mouse B cells. J Exp Med 160:679–694, 1984PubMedGoogle Scholar
  30. 30.
    Noelle R, Krammer PH, Ohara J, Uhr J, Vitetta ES: Increased expression of Ia antigens on resting B cells: An additional role for B-cell growth factor. Proc Natl Acad Sci USA 81:6149–6153, 1984PubMedGoogle Scholar
  31. 31.
    Alderson MR, Pike BL, Nossal GJV: Single cell studies on the role of B-cell stimulatory factor 1 in B-cell activation. Proc Natl Acad Sci USA 84:1389–1393, 1987PubMedGoogle Scholar
  32. 32.
    Scher I: The CBA/N mouse strain: An experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol 33:1–71, 1982PubMedGoogle Scholar
  33. 33.
    O'Brien A, Scher I, Campbell GH, MacDermott RP, Formal SB: Susceptibility of CBA/N mice to infection withSalmonella typhimurium: Influence of the X-linked gene controlling B lymphocyte function. J Immunol 123:720–724, 1979PubMedGoogle Scholar
  34. 34.
    Briles D, Nahm M, Schroer K, Baker P, Davie J: Perspectives in Immunology. New York, Academic Press, 1980Google Scholar
  35. 35.
    Hunter K, Finkelman FD, Strickland GT, Sayles PC, Scher IJ: Defective resistance toPlasmodium yoelii in CBA/N mice. J Immunol 123:133–137, 1979PubMedGoogle Scholar
  36. 36.
    Mosier DE, Scher I, Paul WE:In vitro responses of CBA/N mice: Spleen cells of mice with an X-linked defect that precludes immune responses to several thymus-independent antigens can respond to TPN-lipopolysaccharide. J Immunol 117:1363–1369, 1976PubMedGoogle Scholar
  37. 37.
    Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, Kastelein R, Moore KW, Banchereau J: IL-10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci 89:1890–1893, 1992PubMedGoogle Scholar
  38. 38.
    Banchereau J, de Paoli P, Valle A, Garcia E, Rousset F: Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251:70–72, 1991PubMedGoogle Scholar
  39. 39.
    Defrance T, Vanbervliet B, Briere F, Durand I, Rousset F, Banchereau J: Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J Exp Med 175:671–682, 1992PubMedGoogle Scholar
  40. 40.
    Ishida H, Hastings R, Kearney J, Howard M: Continuous anti-IL-10 antibody administration depletes mice of Ly-1 B cells but not conventional B cells. J Exp Med 175:1213–1220, 1992PubMedGoogle Scholar
  41. 41.
    Beutler B, Milsark IW, Cerami AC: Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871, 1985PubMedGoogle Scholar
  42. 42.
    Beutler B, Cerami A: Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320:584–588, 1986PubMedGoogle Scholar
  43. 43.
    Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee T, Kuo GC, Lowry SF, Cerami A: Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330:662–664, 1987PubMedGoogle Scholar
  44. 44.
    Starnes HF, Pearce MK, Tewari A, Yim JH, Zou JC, Abrams JS: Anti-IL-6 monoclonal antibodies protect against lethalEscherichia coli infection and lethal tumor necrosis factor-α challenge in mice. J Immunol 145:4185–4191, 1990PubMedGoogle Scholar
  45. 45.
    Coffman RL, Seymour B, Lebman D, Hiraki D, Christiansen J, Shrader B, Cherwinski H, Savelkoul H, Finkelman F, Bond M, Mosmann TR: The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol Rev 102:5–28, 1988PubMedGoogle Scholar
  46. 46.
    Snapper CM, Paul WE: Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947, 1987PubMedGoogle Scholar
  47. 47.
    Hayakawa K, Hardy RR, Herzenberg LA: Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med 161:1554–1568, 1985PubMedGoogle Scholar
  48. 48.
    Herzenberg LA, Stall AM, Lalor PA, Sidman C, Moore WA, Parks DR: The LY-1 B cell lineage. Immunol Rev 93:81, 1986PubMedGoogle Scholar
  49. 49.
    Hardy RR, Hayakawa K: Development and physiology of LY-1 B and its human homolog, LEU-1 B. Immunol Rev 93:53–79, 1986PubMedGoogle Scholar
  50. 50.
    Hayakawa K, Hardy RR: Normal, autoimmune, and malignant CD5+ B cells: The Ly-1 B lineage? Annu Rev Immunol 6:197–218, 1988PubMedGoogle Scholar
  51. 51.
    Kipps TJ: The CD5 B cell. Adv Immunol 47:117–185, 1989PubMedGoogle Scholar
  52. 52.
    Hayakawa K, Hardy RR, Parks DR, Herzenberg LA: The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med 157:202–218, 1983PubMedGoogle Scholar
  53. 53.
    Forster I, Rajewsky K: Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic newborn mice. Eur J Immunol 17:521–528, 1987PubMedGoogle Scholar
  54. 54.
    Hayakawa K, Hardy RR, Honda M, Herzenberg LA, Steinberg AD, Herzenberg LA: Ly-1 B cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc Natl Acad Sci USA 81:2494–2498, 1984PubMedGoogle Scholar
  55. 55.
    Kroese F, Butcher E, Stall A, Lalor P, Adams S, Herzenberg LA: Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1:75–84, 1989PubMedGoogle Scholar
  56. 56.
    Masmoudi H, Mota-Santos T, Huetz F, Coutinho A, Casenave PA: All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Intl Immunol 2:515–520, 1990Google Scholar
  57. 57.
    Carroll P, Stafford D, Schwartz RS, Stollar BD: Murine monoclonal anti-DNA antibodies bind to endogenous bacteria. J Immunol 135:1086–1090, 1985PubMedGoogle Scholar
  58. 58.
    Briles D, Schroer K, Dowie J, Baker P, Kearney J, Barletta R: Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection type 3Streptococcus pneumoniae. J Exp Med 153:694–705, 1981PubMedGoogle Scholar
  59. 59.
    Cunningham AJ: Large numbers of cells in normal mice produce antibody components of isologous erythrocytes. Nature 252:749–751, 1974PubMedGoogle Scholar
  60. 60.
    Grabar P: Autoantibodies and the physiological role of immunoglobulins. Immunol Today 4:337–340, 1983Google Scholar
  61. 61.
    Vakil M, Kearney JF: Functional characterization of monoclonal auto-anti-idiotype antibodies isolated from the early B cell repertoire of BALB/c mice. Eur J Immunol 16:1151–1158, 1986PubMedGoogle Scholar
  62. 62.
    Vakil M, Sauter H, Paige C, Kearney JF:In vivo suppression of perinatal multispecific B cells results in a distortion of the adult B cell repertoire. Eur J Immunol 16:1159–1165, 1986PubMedGoogle Scholar
  63. 63.
    Martinez AC, Pereira P, Cazenave PA, Coutinho A: The mutual selective influences of T-cell and B-cell repertoires: The idiotypic network. Ann Inst Pasteur Immunol 137c:82–84, 1986PubMedGoogle Scholar
  64. 64.
    Araujo PM, Holmberg D, Coutinho A: Idiotypic multireactivity of “natural” antibodies. “Natural” anti-idiotypes also inhibit helper cells with cross-reactive clonotypes. Scand J Immunol 25:497–505, 1987PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Maureen Howard
    • 1
  • Anne O'Garra
    • 1
  • Hiroshi Ishida
    • 1
  • René de Waal Malefyt
    • 1
  • Jan De Vries
    • 1
  1. 1.DNAX Research InstitutePalo Alto

Personalised recommendations