, Volume 17, Issue 1, pp 33–45 | Cite as

α1Acid glycoprotein expression in human leukocytes: Possible correlation between α1-acid glycoprotein and inflammatory cytokines in rheumatoid arthritis

  • Tadashi Nakamura
  • Philip G. Board
  • Kakushi Matsushita
  • Hiromitsu Tanaka
  • Takami Matsuyama
  • Takemasa Matsuda
Original Articles


α-Acid glycoprotein is an acute-phase reactant that becomes markedly elevated in serum during inflammation and has an immunosuppressive effect on lymphocyte fonctions. Patients with collagen diseases had significant increases ofα1-acid glycoprotein in their serum and on the surface of peripheral leukocytes compared with controls. The levels from patients with rheumatoid arthritis were higher than those from patients with systemic lupus erythematosus, mixed connective tissue disease, and Behçet's disease. In patients with rheumatoid arthritis, the value of serumα1-acid glycoprotein correlated with disease activity. Among leukocyte subpopulations, monocytes showed more α1-acid glycoprotein on their surface than polymorphonuclear leukocytes; and lymphocytes. The cell surface expression ofα1-acid glycoprotein on cultured monocytes surface peaked after 48 h. Interleukin-1β and tumor necrosis factor-α stimulated the production of α1-acid glycoprotein RNA message in peripheral blood mononuclear cells over 18–24 h during cell culture. The results show that serumα1-acid glycoprotein reflects systemic disease activity in rheumatoid arthritis. Furthermore, monocytes may serve as a source of production ofα1-acid glycoprotein.


Rheumatoid Arthritis Systemic Lupus Erythematosus Peripheral Blood Mononuclear Cell Connective Tissue Disease Human Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwick, H. G., andH. Haupt. 1984. Human plasma proteins of unknown function.In The Plasma Proteins, Structure, Function and Genetic Control. F.W. Putnam, editor. Academic Press, Orlando, Florida. 167–220.Google Scholar
  2. 2.
    Routledge, P. A. 1989. Clinical relevance of alpha, acid glycoprotein in health and disease.In Alpha1-acid Glycoprotein: Genetics, Biochemistry, Physiological Function and Pharmacology. P. Baumann, W. E. Müller, C. B. Eap, J. P. Tillement, editors. Alan R. Liss, New York. 185–198.Google Scholar
  3. 3.
    Castello, M., R. F. Fiedel, andH. Gewurz. 1979. Inhibition of platelet aggregation by native and desialised alpha-1 acid glycoprotein.Nature 281:677–678.Google Scholar
  4. 4.
    Chiu, K. M., R. F. Mortensen, A. P. Osmand, andH. Gewurz. 1977. Interactions of alpha, -acid glycoprotein with the immune system. I. Purification and effect upon lymphocyte responsiveness.Immunology 32:997–1005.Google Scholar
  5. 5.
    Samak, R., R. Edelstein, andK. Israel. 1982. Immunosuppressive effect of acute-phase reactant proteins in vitro and its relevance to cancer.Immunol. Immunother. 13:38–43.Google Scholar
  6. 6.
    Stefanini, G. F., W. Dirienzo, P. Arnaud, A. Nel, G. W. Canonica, andH. H. Fundenberg. 1986. Inhibitory effect of an antibody against alpha1-acid glycoprotein (α1-AGP) on autologous mixed lymphocyte reaction and anti-T3-lymphocyte activation.Cell. Immunol. 103:65–72.Google Scholar
  7. 7.
    Nakamura, T., S. Ohgaki, Y. Daitoku, S. Hidaka, N. Arima, andH. Tanaka. 1988. Analytical study for serum levels of alpha-1 acid glycoprotein and its roles in immune response in patients with collagen diseases.Jpn. J. Inflamm. 8:335–339.Google Scholar
  8. 8.
    Maeda, H., T. Morinaga, I. Mori, andK. Nishi. 1984. Further characterization of the effects of alpha-1-acid glycoprotein on the passage of human erythrocytes through micropores.Cell Struc. Funct. 9:279–290.Google Scholar
  9. 9.
    Darlington, G. J., D. R. Wilson, andL. B. Lachman. 1986. Monocyte-conditioned medium, interleukin-1, and tumor necrosis factor stimulate the acute phase response in human hepatoma cells in vitro.J. Biol. Chem. 102:787–793.Google Scholar
  10. 10.
    Bauman, H., V. Onorato, J. Gauldie, andG. P. Jahreis. 1987. Distinct sets of acute phase plasma proteins are stimulated by separate hepatocyte stimulating factors and monokines in rat hepatoma cells.J. Biol. Chem. 272:9756–9768.Google Scholar
  11. 11.
    Mackiewicz, A., M. K. Ganapathi, D. Schultz, andI. Kushner. 1987. Monokines regulate glycosylation of acute-phase proteins.J. Exp. Med. 166:253–258.Google Scholar
  12. 12.
    Geiger, T., T. Andus, J. Klapproth, H. Northoff, andP. C. Heinrich. 1988. Interaction of α1-acid glycoprotein by recombinant human interleukin-1 in rat hepatoma cells.J. Biol. Chem. 263:7141–7146.Google Scholar
  13. 13.
    Castel, J. V., M. J. Gometz-Lechon, M. David, T. Hirano, T. Kishimoto, andP. C. Heinrich. 1988. Recombinant human interIeukin-6 (IL-6/BSF-2/HSF) regulates the synthesis of acute phase proteins in human hepatocytes.FEBS Lett. 232:347–350.Google Scholar
  14. 14.
    Mackiewicz, A., M. K. Ganapathi, D. Schultz, D. Samols, J. Reese, andI. Kushner. 1988. Regulation of rabbit acute phase protein biosynthesis by monokines.Biochem. J. 253:851–857.Google Scholar
  15. 15.
    Ganapathi, M. K., D. Schultz, A. Mackiewicz, D. Samols, S.-I. Hu, A. Brabenec, S. S. Macintyre, andI. Kushner. 1988. Heterogenous nature of the acute phase response. Differential regulation of human serum amyloid A, C-reactive protein, and other acute phase proteins by cytokines in Hep 3B cells.J. Immunol. 141:564–569.Google Scholar
  16. 16.
    Mackiewicz, A., D. Schultz, J. Mathison, M. K. Ganapathi, andI. Kushner. 1989. Effect of cytokines on glycosylation of acute phase proteins in human hepatoma cell lines.Clin. Exp. Immunol. 75:70–75.Google Scholar
  17. 17.
    Mackiewicz, A., T. Speroff, M. K. Ganapathi, andI. Kushner. 1991. Effects of cytokine combinations on acute phase protein production in two human hepatoma cell lines.J. Immunol. 146:3032–3037.Google Scholar
  18. 18.
    Gahmberg, C. G., andI. C. Anderson. 1978. Leukocyte surface origin of humanα 1-acid glycoprotein (orosomucoid).J. Exp. Med. 148:507–521.Google Scholar
  19. 19.
    Arnett, F. C., S. M. Edworthy, D. A. Bloch, D. J. McShane, J. F. Fries, N. S. Cooper, L. A. Healey, S. R. Kaplan, M. H. Liang, H. S. Juthra, T. A. Medsger, Jr., D. M. Mitchell, D. H. Newstadt, R. S. Pinals, J. G. Schaller, J. T. Sharp, R. L. Wilder, andG. G. Hunder. 1988. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.Arthritis Rheum. 31:315–324.Google Scholar
  20. 20.
    Tan, E. M., A. S. Cohen, J. F. Fries, A. T. Masi, D. J. McShane, N. F. Rothfield, J. G. Schaller, N. Talal, andR. J. Winchester. 1982. The 1982 revised criteria for the classification of systemic lupus erythematosus.Arthritis Rheum. 25:1271–1277.Google Scholar
  21. 21.
    Ritchie, D. M., J. A. Botle, J. M. McInnes, M. K. Jasani, T. G. Dalakos, P. Grieveson, andW. W. Buchanan. 1968. Clinical studies with an articular index for the assessment of joint tenderness in patients with rheumatoid arthritis.Q. J. Med. 37:393–406.Google Scholar
  22. 22.
    Rothfield, N. F., andN. Pace. 1962. Relation of positive L.E.-cell preparations to activity of lupus erythematosus and corticosteroid therapy.N. Engl. J. Med. 266:535–538.Google Scholar
  23. 23.
    Peys, M. B., J. G. Lanhan, andF. C. Debeer, 1982. C-reactive protein in SLE.In Clinics in rheumatic diseases. G. R. V. Hugher, editor, W. B. Saunders, Philadelphia. 91–103.Google Scholar
  24. 24.
    International Committee for Standarization in Haematology. 1973. Reference method for the erythrocyte sedimentation rate (ESR) test on human blood.Br. J. Haematol. 12:671–673.Google Scholar
  25. 25.
    Richie, T. F. 1967. A simple, direct and sensitive technique for the measurement of specific proteins in dilute solution.J. Lab. Clin. Med. 70:512–517.Google Scholar
  26. 26.
    Mancini, G., A. O. Carbonara, andG.F. Heremans. 1965. Immunochemical quantitation of antigens by single radial immunodiffusion.Immunochemistry 2:235–254.Google Scholar
  27. 27.
    Tamura, K., Y. Shibata, andN. Ishida. 1981. Isolation and characterization of an immunosuppressive acidic protein (IAP) from ascitic fluids of cancer patients.Cancer Res. 41:3244–3252.Google Scholar
  28. 28.
    Böyum, A. 1968. Isolation of mononuclear cells and granulocytes from human blood.Scand. J. Clin. Lab. Invest. 21:77–79.Google Scholar
  29. 29.
    Chomczynski, P., andN. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162:156–159.Google Scholar
  30. 30.
    Thomas, P.S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205.Google Scholar
  31. 31.
    Board, P. G., I. M. Jones, andA. K. Bentley. 1986. Molecular cloning and nucleotide sequence of human α1 acid glycoprotein cDNA.Gene 44:127–131.Google Scholar
  32. 32.
    Denko, C. W., andK. Wanek. 1984. Anti-inflammatory action of alpha-1 acid glycoprotein in urate crystal inflammation.Agents Action 15:539–540.Google Scholar
  33. 33.
    Thomas, T., S. Fletcher, G. C. T. Yeoh, andG. Schreiber. 1989. The expression ofα 1-acid glycoprotein mRNA during rat development. High levels of expression in the decidua.J. Biol. Chem. 264:5784–5790.Google Scholar
  34. 34.
    Sarcione, E. J. 1963. Synthesis ofα 1-acid glycoprotein by the isolated perfused rat liver.Arch. Biochem. Biophys. 100:516–519.Google Scholar
  35. 35.
    Milland, J., A. Tsykin, T. Thomas, A. R. Aldted, T. Col, andG. Schreiber. 1990. Gene expression in regulating and acute-phase rat liver.Am. J. Physiol. 259:340–347.Google Scholar
  36. 36.
    Shiels, B. R., W. Northeman, M. R. Gehring, andG. H. Fey. 1987. Modified nuclear processing ofα 1-acid glycoprotein RNA during inflammation.J. Biol. Chem. 262:12826–12831.Google Scholar
  37. 37.
    Gendler, S. J., G. B. Dermer, L. M. Silverman, andZ. A. Tokes. 1982. Synthesis ofα 1-antichymotrypsin andα 1-acid glycoprotein by human breast epithelial cells.Cancer Res. 42:4567–4573.Google Scholar
  38. 38.
    Dente, L., U. Ruther, M. Tripodi, E. F. Wagner, andR. Cortese. 1988. Expression of humanα 1-acid glycoprotein gene in cultured cells and transgenic mice.Gene Dev. 2:259–266.Google Scholar
  39. 39.
    Dewey, M. J., C. Rheaume, F. G. Berger, andH. Baumann. 1990. Inducible and tissuespecific expression of ratα 1-1-acid glycoprotein in transgenic mice.J. Immunol. 144:4392–4398.Google Scholar
  40. 40.
    Dube, Y. J., G. Paradis, B. Tetu, andR. R. Tremblay. 1989. Synthesis of α1-acid glycoprotein by the human prostate.Prostate 15:251–258.Google Scholar
  41. 41.
    Shibata, Y., K. Tamura, andN. Ishida. 1984. Cultured human monocytes, granulocytes and a monoblastoid cell line (TPH-1) synthesize and secret immunosuppressive acidic protein (a type ofα 1-acid glycoprotein).Microbiol. Immunol. 28:99–111.Google Scholar
  42. 42.
    Aozasa, K., K. Ueda, M. Ayata, M. Tsujimoto, M. Q. Fujita, T. Yamamoto, andT. Tsujimoto. 1987. Immunohistochemical determination of immunosuppressive acidic protein in reactive and neoplastic diseases of macrophage.Cancer 60:2424–2427.Google Scholar
  43. 43.
    Pawlowski, T., S. H. Mackiewicz, andA. Mackiewicz. 1989. Microheterogeneity of alpha1 acid glycoprotein in the detection of intercurrent infection in patients with rheumatoid arthritis.Arthritis Rheum. 32:347–351.Google Scholar
  44. 44.
    Mackiewicz, A., R. Marcinkowska-Pieta, S. Ballou, S. Mackiewicz, andI. Kushner. 1987. Microheterogeneity of alpha1-acid glycoprotein in the detection of intercurrent infection in systemic lupus erythematosus.Arthritis Rheum. 30:513–518.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Tadashi Nakamura
    • 1
  • Philip G. Board
    • 2
  • Kakushi Matsushita
    • 1
  • Hiromitsu Tanaka
    • 1
  • Takami Matsuyama
    • 3
  • Takemasa Matsuda
    • 4
  1. 1.First Department of Internal MedicineJohn Curtin School of Medical Research, Australian National UniversityCanberraAustralia
  2. 2.Division of Clinical Sciences, Molecular Genetics Group, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
  3. 3.Department of Immunology and Medical Zoology, Faculty of MedicineKagoshima UniversityKagoshimaJapan
  4. 4.Rheumatic CenterKagoshima Red Cross HospitalKagoshimaJapan

Personalised recommendations