Inflammation

, Volume 14, Issue 6, pp 681–689

Endotoxin-mediated bovine alveolar macrophage procoagulant induction is dependent on protein kinase C activation

  • Bruce D. Car
  • David O. Slauson
  • Monique Doré
  • M. Mitsu Suyemoto
Original Articles

Abstract

The induction of pulmonary alveolar macrophage (PAM) tissue factor-dependent procoagulant activity is central to the deposition of inflammatory fibrin in the pulmonary alveolus. The presence of enhanced tissue factor activity is often associated with pulmonary fibrin deposition, an important pathogenetic event that can delay resolution of pulmonary inflammation and promote the induction of pulmonary fibrosis. Since tissue factor synthesis induction and activation pathways are potential therapeutic targets for modulation of alveolar macrophage tissue factor (procoagulant) activity, we examined the pathways through which endotoxin lipopolysaccharide (LPS) induces bovine PAM tissue factor-dependent procoagulant activity. PAM procoagulant activity was markedly enhanced to 10 times the levels of freshly isolated PAM after 8 h of culture in the presence of either the protein kinase C (PKC) agonist phorbol 12-myristate 13-acetate (PMA) or LPS. Both LPS-(P < 0.002) and PMA-induced activity (P < 0.007) was completely ablated by the PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H 7,100μM but was unaffected by the cyclic nucleotide-dependent protein kinase inhibitorN-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004, 100μM). The arachidonate cyclooxygenase pathway inhibitor phenylbutazone (10−4 M) had modest effects that were not statistically significant. The unstimulated increase of procoagulant activity in 8-h cultures was unaffected by the same inhibitory modulations. These results indicate that PKC-dependent signal transduction pathways are involved in the stimulation of PAM procoagulant activity and that inhibition of this protein kinase prevents LPS-induction of new activity. The results also suggest that the transduction pathways leading to either PMA- or LPS-induced procoagulant activity are similar to the extent that both appear to require an intact PKC system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryan, J., andC. L. Geczy. 1987. Coagulation and the expression of cell-mediated immunity.Immunol. Cell Biol. 65:127–139.Google Scholar
  2. 2.
    Chapman, H. A., Jr.,M. Stahl, C. L. Allen, R. Yee, andD. S. Fair. 1988. Regulation of the procoagulant activity within the bronchoalveolar compartment of normal human lung.Am. Rev. Respir. Dis. 137:1417–1425.Google Scholar
  3. 3.
    Geczy, C. L., andR. A. Meyer. 1982. Leukocyte procoagulant activity in man: An in vitro correlate of delayed-type hypersensitivity.J. Immunol. 128:331–336.Google Scholar
  4. 4.
    Brentjens, R. J. 1987. Glomerular procoagulant activity and glomeralonephritis.Lab. Invest. 57:107–111.Google Scholar
  5. 5.
    Burkhardt, A., andH. Cottier. 1989. Cellular events in alveolitis and the evolution of pulmonary fibrosis.Virchows Arch. B. Cell Pathol. 58:1–13.Google Scholar
  6. 6.
    Idell, S., K. Gonzalez, H. Bradford, C. K. MacArthur, A. M. Fein, R. J. Maunder, J. G. N. Garcia, D. E. Griffith, J. Weiland, T. R. Martin, J. McLarty, D. S. Fair, P. N. Walsh, andR. W. Colman. 1987. Procoagulant activity in bronchoalveolar lavage in the adult respiratory distress syndrome.Am. Rev. Respir. Dis. 136:1466–1474.Google Scholar
  7. 7.
    Chapman, H. A., Jr.,D. S. Fair, C. L. Allen, andO. L. Stone. 1985. Human alveolar macrophages synthesize factor VII. Possible role in interstitial lung disease.J. Clin. Invest. 75:2030–2037.Google Scholar
  8. 8.
    Grünig, G., M. Hermann, C. Winder, andR. Von Fellenberg. 1988. Procoagulant activity in respiratory tract secretions from horses with chronic pulmonary disease.Am. J. Vet. Res. 49:705–709.Google Scholar
  9. 9.
    Idell, S., K. K. Gonzalez, C. K. MacArthur, C. Gillies, P. N. Walsh, P. McLarty, andR. S. Thrall. 1987. Bronchoalveolar lavage procoagulant activity in bleomycin-induced lung injury in marmosets. Characterization and relationship to fibrin deposition and fibrosis.Am. Rev. Respir. Dis. 136:124–133.Google Scholar
  10. 10.
    Sitrin, R. G., P. G. Brubaker, andJ. C. Fantone. 1987. Tissue fibrin deposition during acute lung injury in rabbits and its relationship to local expression of procoagulant and fibrinolytic activities.Am. Rev. Respir. Dis. 135:930–936.Google Scholar
  11. 11.
    Rothberger, H., M. P. McGee, andT. L. Lee. 1984. Tissue factor activity: A marker of alveolar macrophage maturation in rabbits. Effects of granulomatous pneumonitis.J. Clin. Invest. 73:1524–1531.Google Scholar
  12. 12.
    Idell, S., B. T. Peterson, K. K. Gonzalez, L. D. Gray, R. Bach, J. McLarty, andD. S. Fair. 1988. Local abnormalities of coagulation and fibrinolysis and alveolar fibrin deposition in sheep with oleic acid-induced lung injury.Am. Rev. Respir. Dis. 138:1282–1294.Google Scholar
  13. 13.
    Idell, S., J. Peters, K. K. Jacobs, D. S. Fair, andJ. J. Coalson. 1989. Local abnormalities of coagulation and fibrinolytic pathways that promote alveolar fibrin deposition in the lungs of baboons with diffuse alveolar damage.J. Clin. Invest. 84:181–183.Google Scholar
  14. 14.
    Tipping, P. G., D. A. Campbell, N. W. Boyce, andS. R. Holdsworth. 1988. Alveolar macrophage procoagulant activity is increased in acute hyperoxic lung injury.Am. J. Pathol. 131:206–212.Google Scholar
  15. 15.
    Spencer, H. 1975. Pathogenesis of interstitial fibrosis of the lungs.Progr. Respir. Res. 8:34–44.Google Scholar
  16. 16.
    Slauson, D. O. 1982. The mediation of pulmonary inflammatory injury.Adv. Vet. Sci. Compar. Med. 26:99–153.Google Scholar
  17. 17.
    Basset, F., V. J. Ferrans, P. Soler, T. Takemura, Y. Fukuda, andR. G. Crystal. 1986. Intraluminal fibrosis in interstitial lung disorders.Am. J. Pathol. 122:443–461.Google Scholar
  18. 18.
    Dungworth, D. L. 1985. The respiratory system.In Pathology of the Domestic Animals.K. V. F. Jubb, P. C. Kennedy, andN. Palmer, editors. Academic Press, New York. 414–541.Google Scholar
  19. 19.
    Schiefer, B., G. E. Ward, andR. E. Moffatt. 1978. Correlation of microbiological and histopathological findings in bovine fibrinous pneumonia.Vet. Pathol. 15:313–321.Google Scholar
  20. 20.
    Hidaka, H., M. Inagaki, S. Kawamoto, andY. Sasaki. 1984. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C.Biochemistry 23:5036–5041.Google Scholar
  21. 21.
    Lay, J. C., D. O. Slauson, andW. L. Castleman. 1986. Volume-controlled bronchopulmonary lavage of normal and pneumonic calves.Vet. Pathol. 23:673–680.Google Scholar
  22. 22.
    Slauson, D. O., J.C. Lay, W. L. Castleman, andN. R. Neilsen. 1987. Alveolar macrophage phagocytic kinetics following pulmonary parainfluenza virus-3 infection.J. Leukocyte Biol. 41:412–420.Google Scholar
  23. 23.
    Slauson, D. O., J. C. Lay, W. L. Castleman, andN. R. Neilsen. 1989. Influence of acute pulmonary interstitial inflammation on alveolar macrophage phagocytic kinetics.Inflammation 13:429–441.Google Scholar
  24. 24.
    Castleman, W. L., J. C. Lay, E. J. Dubovi, andD. O. Slauson. 1985. Experimental bovine respiratory syncytial virus infection in conventional calves: Light microscopic lesions, microbiology, and studies on lavaged lung cells.Am. J. Vet. Res. 46:547–553.Google Scholar
  25. 25.
    Doré, M., D. O.Slauson, and N. R.Neilsen. 1990. Decreased respiratory burst activity in neonatal bovine neutrophils stimulated by protein kinase C agonists.Am. J. Vet. Res. (in press).Google Scholar
  26. 26.
    Clifford, C. B., D. O. Slauson, N. R. Neilsen, R. D. Zwahlen, andD. H. Schlafer. 1989. Ontogeny of inflammatory cell responsiveness: superoxide anion generation by phorbol ester-stimulated fetal, neonatal and adult bovine neutrophils.Inflammation 13:221–231.Google Scholar
  27. 27.
    Geczy, C. L., E. Farram, D. K. Moon, P. A. Meyer, andI. F. C. McKenzie. 1983. Macrophage procoagulant activity as a measure of cell-mediated immunity in the mouse.J. Immunol. 130:2743–2749.Google Scholar
  28. 28.
    Car, B. D., D. O. Slauson, M. M. Suyemoto, andN. R. Neilsen. 1988. Kinetics and regulation of bovine alveolar macrophage procoagulant activity.J. Leukocyte Biol. 44:299 (abstract).Google Scholar
  29. 29.
    Rivers, R. P. A., W. E. Hathaway, andW. L. Weston. 1975. The endotoxin-induced coagulant activity of human monocytes.Br. J. Haematol. 30:333–340.Google Scholar
  30. 30.
    Kornberg, A., A. Treves, R. A. Rachmilewitz, andE. Finbach. 1988. Generation of procoagulant activity (PCA) by phorbol ester-induced macrophages derived from a leukemic promyelocytic cell line (HL-60).Blood 82:1061–1066.Google Scholar
  31. 31.
    Lyberg, T. 1984. Intracellular signal mechanisms in induction of thromboplastin synthesis.Haemostasis 14:393–399.Google Scholar
  32. 32.
    Zuckerman, S. H., andY. M. Surprenant. 1988. Augmentation of procoagulant activity in monokine stimulated human endothelial cells by calmodulin/protein kinase C inhibitors.Thromb. Res. 49:205–214.Google Scholar
  33. 33.
    McGee, M. P., R. Devlin, R. Saluta, andH. Koren. 1990. Tissue factor and factor VII messenger RNAs in human alveolar macrophages: Effects of breathing ozone.Blood 75:122–127.Google Scholar
  34. 34.
    Drake, T. A., J. H. Morrissey, andT. S. Edgington. 1989. Selective cellular expression of tissue factor in human tissues.Am. J. Pathol. 134:1087–1097.Google Scholar
  35. 35.
    Crutchley, D. J. 1984. Effects of inhibitors of arachidonic acid metabolism on thromboplastin activity in human monocytes.Biochem. Biophys. Res. Commun. 119:179–184.Google Scholar
  36. 36.
    Kikkawa, U., andY. Nishizuka. 1986. The role of protein kinase C in transmembrane signalling.Annu. Rev. Cell Biol. 2:149–178.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Bruce D. Car
    • 1
  • David O. Slauson
    • 1
  • Monique Doré
    • 1
  • M. Mitsu Suyemoto
    • 1
  1. 1.Inflammation Research Laboratory Department of Pathology College of Veterinary MedicineCornell UniversityIthaca
  2. 2.Theodor Kocher InstitutBernSwitzerland
  3. 3.Department of Pathobiology, College of Veterinary MedicineUniversity of TennesseeKnoxville

Personalised recommendations