, Volume 14, Issue 6, pp 669–680 | Cite as

Oxidant defense mechanisms in the human colon

  • Matthew B. Grisham
  • Richard P. MacDermott
  • Edwin A. Deitch
Original Articles


Reactive oxygen metabolites have been implicated as important mediators of inflammation-induced intestinal injury associated with ischemia (and reperfusion), radiation, and inflammatory bowel disease. Because the colonie mucosa may be subjected to significant oxidant stress during times of acute and chronic inflammation, knowledge of the oxidant defense mechanisms in the colon is of biologic and potential clinical importance. Therefore, the objective of this study was to quantify the specific activities of superoxide dismutase (SOD), catalase, and GSH peroxidase in the normal human colon. We found low, but significant, amounts of all three enzymes in the mucosa, submucosa, and muscularis/serosa of the human colon. However, the mucosal levels of SOD (3.6±0.3 units/mg protein), catalase (11±3 units/ mg), and GSH peroxidase (15.2±0.8 mU/mg) represented only 8%, 4%, and 40%, respectively, of those values determined for human liver. Colonic epithelial cells derived from mucosal biopsies exhibited significantly higher specific activities for SOD (12±0.5 units/mg) and catalase (26±6 units/mg) when compared to whole mucosa, suggesting most of the mucosal activity was associated with the epithelial cells and not the lamina propria. In a comparative study, we found that a human colonic carcinoma cell line (CaCo-2) contained significantly lower SOD (6 ±0.5 units/mg) and catalase (6±0.6 units/mg) activities when compared to colonic epithelial cells. Taken together, our data suggest that: (1) the colonic mucosa is relatively deficient in antioxidant enzymes when compared to liver, and (2) most of the protective enzyme activity is localized within the epithelium and not the mucosal interstitium.


Inflammatory Bowel Disease Catalase Human Colon Colonic Epithelial Cell Mucosal Biopsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deitch, E. A., W. Bridges, J. Baker, J-W. May, L. Ma, M. B. Grisham, D. N. Granger, R. D. Specian, andR. Berg. 1988. Hemorrhagic shock-induced bacterial translocation is reduced by xanthine oxidase inhibition or inactivation.Surgery 104:191–198.Google Scholar
  2. 2.
    Deitch, E. A., L. Ma, M. B. Grisham, D. N. Granger, R. D. Specian, andR. Berg. 1989. Inhibition of endotoxin-induced bacterial translocation in mice.J. Clin. Invest. 84:36–42.Google Scholar
  3. 3.
    Wells, C. L., M. A. Maddaus, andR. L. Simmons. 1989. Bacterial translocation.In Splanchnic Ischemia and Multiple Organ Failure. A. Marston, G. B. Blukley, R. G. Fiddian-Green, and U. H. Haglund, Editors. Edward Arnold, London. 195–204.Google Scholar
  4. 4.
    Granger, D. N., 1988. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury.Am. J. Physiol,255:H1269-H1275.Google Scholar
  5. 5.
    Grisham, M. B., andD. N. Granger, 1990. Mechansims of neutrophil-mediated tissue injury.In Inflammatory Bowel Disease. R. MacDermott, and W. Stenson, Editors. Elsevier, New York (in press).Google Scholar
  6. 6.
    Doroshow, J. H., G. Y. Locker, andC. E. Myers. 1980. Enzymatic defense of the mouse heart against reactive oxygen metabolites.J. Clin. Invest. 65:128–135.Google Scholar
  7. 7.
    MacDermott, R. P., G. S. Nash, M. J. Bertrovich, R. F. Mohrman, I. J. Kodner, D. L. Delacroix, andJ. P. Vaerman. 1986. Altered patterns of secretion of monomeric IgA and IgA Subclass 1 by intestinal mononuclear cells in inflammatory bowel disease.Gastorenterology 91:379–385.Google Scholar
  8. 8.
    Scott, M. G., M. H. Nahm, K. Macke, G. S. Nash, M. J. Bertrovich, andR. P. MacDermott. 1986. Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: Differences between ulcerative colitis, Crohn's disease and controls.Clin. Exp. Immunol. 66:209–215.Google Scholar
  9. 9.
    Peters, M. G., H. Secrist, K. R. Anders, G. S. Nash, S. R. Rich, andR. P. MacDermott. 1989. Normal human intestinal B lymphocytes, increased activation compared with peripheral blood.J. Clin. Invest. 83:1827–1833.Google Scholar
  10. 10.
    Field, F. J., E. Abright, andS. N. Mathur. 1987. Regulation of cholesterol esterification by micellar cholesterol in CaCo-2 cells.J. Lipid Res. 28:1057–1066.Google Scholar
  11. 11.
    Aebi, H. 1984. Catalase in vitro.Methods Enzymol. 105:121–126.Google Scholar
  12. 12.
    Crapo, J. D., J. M. McCord, andI. Fridovich. 1987. Preparation and assay of superoxide dismutases.Methods Enzymol. 53:382–387.Google Scholar
  13. 13.
    Palia, D. E., andW. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase.J. Lab. Clin. Med. 70:158–169.Google Scholar
  14. 14.
    Blanchflower, W. J., D. A. Rice, andW. B. Davidson. 1986. Blood glutathione peroxidase: A method for measurement and the influence of storage, cyanide, and Drabkin's reagent on enzyme activity.Biol. Trace Element Res. 11:89–100.Google Scholar
  15. 15.
    Tentori, L., andA. M. Salvati. 1981. Hemoglobinometry in human blood.Methods Enzymol. 76:707–731.Google Scholar
  16. 16.
    Granger, D. N., L. A. Hernandez, andM. B. Grisham. 1986. Reactive oxygen metabolites: mediators of cell injury in the digestive system.Vien Dig. Dis. 18:13–16.Google Scholar
  17. 17.
    Grisham, M. B., L. A. Hernandez, andD. N. Granger. 1986. Xanthine oxidase and neutrophil infiltration in intestinal ischemia.Am. J. Physiol. 251:G567-G574.Google Scholar
  18. 18.
    Sekizuka, E., M. B. Grisham, M. Li, E. A. Deitch, andD. N. Granger. 1988. Inflammation-induced intestinal hyperemia in the rat: Role of neutrophils.Gastroenterology 95:1528–1534.Google Scholar
  19. 19.
    Grisham, M. B., T. D. Engerson, J. M. McCord, andH. P. Jones. 1985. A comparative study of neutrophils purification and function.J. Immunol. Methods 82:315–320.Google Scholar
  20. 20.
    Grisham, M. B., M. N. Jefferson, D. F. Melton, andE. L. Thomas. 1984. Chlorination of endogenous amines by isolated neutrophils.J. Biol. Chem. 259:10404–10413.Google Scholar
  21. 21.
    Grisham, M. B., T. S. Gaginella, C. von Ritter, H. Tamai, M. Be, andD. N. Granger. 1990. The effects of neutrophil-derived oxidants on ileal mucosal permeability and epithelial cell viability.Inflammation 14:531–542.Google Scholar
  22. 22.
    Grisham, M. B., andP. R. Kvietys. 1989. Sublethal amounts of hydrogen peroxide produce breaks in double stranded DNA of intestinal epithelial cells and lymphocytes.Gastroenterology 96:A185 (abstract).Google Scholar
  23. 23.
    Clark, D. A., D. M. Fornabaio, H. McNeill, K. M. Mullane, S. J. Caravella, andM. J. S. Miller, 1988. Contribution of oxygen-derived free radicals to experimental necrotizing enterocolitis.Am. J. Pathol. 130:537–542.Google Scholar
  24. 24.
    Miller, M. J. S., andD. A. Clark. 1988. Participation of free radicals and eicosanoids in experimental necrotizing enterocolitis, a neonatal inflammatory bowel disease.In Inflammatory Bowel Disease: Current Status and Future Approach. R. P. MacDermott, editor. Excerpta Medica, Amsterdam. 267–272.Google Scholar
  25. 25.
    Hernandez, L. A., M. B. Grisham, C. von Ritter, andD. N. Granger. 1987. Biochemical localization of xanthine oxidase in the cat small intestine.Gastroenterology 92:1433 (abstract).Google Scholar
  26. 26.
    Halliwell, B. andJ. Mc. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts.Arch. Biochem. Biophys. 246:501–514.Google Scholar
  27. 27.
    Greenwald, R. A., andS. A. Moak. 1986. Degradation of hyaluronic acid by polymorphonuclear leukocytes. Inflammation10:15–30.Google Scholar
  28. 28.
    Curran, S. F., M. A. Amoruso, B. D. Goldstein, andR. A. Berg. 1984. Degradation of soluble collagen by ozone or hydroxyl radicals.FEBS Lett. 176:155–159.Google Scholar
  29. 29.
    Greenwald, R. A., andW. W. Moy. 1979. Inhibition of collagen gelation by action of the superoxide radical.Arthritis Rheum. 22:251–259.Google Scholar
  30. 30.
    Grisham, M. B., C. von Ritter, B. F. Smith, J. LaMont, andD. N. Granger. 1987. Interaction between oxygen radicals and gastric mucin.Am. J. Physiol. 253:G93-G96.Google Scholar
  31. 31.
    von Ritter, C., E. Sekizuka, M. B. Grisham, andD. N. Granger. 1988. The chemotactoc peptideN-formyl-methionyl-leucyl-phenylalanine increases mucosal permeability in the distal ileum of the rat.Gastroenterology 95:651–656.Google Scholar
  32. 32.
    von Ritter, C., M. B. Grisham, M. E. Hollwarth, W. Inauen, andD. N. Granger. 1989. Neutrophil-derived oxidants mediate F-Met-Leu-Phe-induced ileitis in rats.Gastroenterology 97:778–780.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Matthew B. Grisham
    • 1
  • Richard P. MacDermott
    • 2
  • Edwin A. Deitch
    • 3
  1. 1.Department of Physiology and BiophysicsLouisiana State University Medical CenterShreveport
  2. 2.Gastroenterology SectionUniversity of Pennsylvania School of MedicinePhiladelphia
  3. 3.Department of SurgeryLouisiana State University Medical CenterShreveport

Personalised recommendations