Journal of Applied Mechanics and Technical Physics

, Volume 26, Issue 5, pp 702–708 | Cite as

Hydrodynamic instability of the ablation front in the presence of ablation acceleration of a layer

  • N. A. Inogamov


Mathematical Modeling Mechanical Engineer Industrial Mathematic Hydrodynamic Instability Ablation Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. I. Anisimov, M. F. Ivanov, and N. A. Inogamov, “Compression and heating processes in laser targets,” Preprint, Landau Inst. Teor. Fiz. Akad. Nauk SSSR, Chernogolovka (1977).Google Scholar
  2. 2.
    N. A. Inogamov, “Rayleigh-Taylor instability in a compressible medium,” Preprint, Landau Inst. Teor. Fiz. Akad. Nauk SSSR, Chernogolovka (1980).Google Scholar
  3. 3.
    A. M. Prokhorov, S. I. Anisimov, and P. P. Pashinin, “Laser-driven thermonuclear fusion,” Usp. Fiz. Nauk,119 No. 3 (1976).Google Scholar
  4. 4.
    D. B. Henderson, R. L. McCrory, and R. L. Morse, “Ablation stability of laser-driven implosions,” Phys. Rev. Lett., 33., No. 4 (1974).Google Scholar
  5. 5.
    I. N. Shian, E. B. Goldman, and C. I. Weng, “A linear symmetry and stability analysis of laser-driven implosions,” Phys. Rev. Lett.,32, No. 7 (1974).Google Scholar
  6. 6.
    K. A. Bruckner, S. Jorna, and R. Landa, “Hydrodynamic stability of a laser-driven plasma,” Phys. Fluids,17, No. 8 (1974).Google Scholar
  7. 7.
    R. L. McCrory, L. Montierth, et al., “Taylor instability in fusion targets,” Phys. Rev. Lett.,46, No. 5 (1981).Google Scholar
  8. 8.
    N. N. Bokov, A. A. Bunatyan, et al., “Development of perturbations accompanying compression of a shell by laser radiation,” Pis'ma Zh. Eksp. Teor. Fiz.,26, No. 9 (1977).Google Scholar
  9. 9.
    M. H. Emery, J. H. Gardner, and J. P. Boris, “The Rayleigh-Taylor and Kelvin-Helmholtz instabilities in targets accelerated by laser ablation,” NRL Memorandum Report 4626 (1981).Google Scholar
  10. 10.
    S. E. Bodner, “Rayleigh-Taylor instability and laser-pellet fusion,” Phys. Rev. Lett.,33, No. 13 (1974).Google Scholar
  11. 11.
    L. Baker, “Analytic theory of ablation layer instability,” Phys. Fluids,26, No. 3 (1983).Google Scholar
  12. 12.
    Yu. V. Afanas'ev, N. G. Basov, et al., “Symmetry and stability of compression of laser thermonuclear targets,” Pis'ma Zh. Eksp. Teor. Fiz.,23, No. 11 (1976).Google Scholar
  13. 13.
    N. A. Inogamov, “Instability of the ablation front accompanying acceleration of a layer by the ablation pressure,” Pis'ma Zh. Tekh. Fiz.,9, No. 18 (1983).Google Scholar
  14. 14.
    S. I. Anisimov, M. F. Ivanov, et al., “Numerical simulation of laser compression and heating of simple shell targets,” Fiz. Plazmy,3, No. 4 (1977).Google Scholar
  15. 15.
    S. I. Anisimov and N. A. Inogamov, “Development of instability and loss of symmetry accompanying isentropic compression of a spherical drop,” Pis'ma Zh. Eksp. Teor. Fiz.,20, No. 3 (1974).Google Scholar
  16. 16.
    N. A. Inogamov, “Model analysis of the Taylor instability of shells,” Pis'ma Zh. Tekh. Fiz.,3, No. 7 (1977).Google Scholar
  17. 17.
    S. I. Anisimov and N. A. Inogamov, “Singular self-similar states of ultradense compression of laser targets,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1980).Google Scholar
  18. 18.
    N. A. Inogamov and S. I. Anisimov, “Self-similar cumulation plasma flows,” Pis'ma Zh. Tekh. Fiz.,3 No. 21 (1977).Google Scholar
  19. 19.
    Chia-shun Ii, “Wave motions in layered liquids,” in: Nonlinear Waves [Russian translation], Mir, Moscow (1977).Google Scholar
  20. 20.
    G. Birkhoff and E. Sarantonello, Jets, Wakes, and Cavities [Russian translation], Mir, Moscow (1964).Google Scholar
  21. 21.
    G. I. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes,” Proc. R. Soc. London A,201, 192 (1950).Google Scholar
  22. 22.
    N. A. Inogamov, “Taylor instability of a flat isentropic layer bounded by isobaric boundaries,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1984).Google Scholar
  23. 23.
    K. O. Mikaelian, “Normal modes and symmetries of the Rayleigh-Taylor instability in stratified fluids,” Phys. Rev. Lett.,48, No. 19 (1982).Google Scholar
  24. 24.
    N. A. Inogamov, “Turbulent stage of Taylor instability,” Pis'ma Zh. Tekh. Fiz.,4, No. 12 (1978)Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • N. A. Inogamov
    • 1
  1. 1.Moscow

Personalised recommendations