Advertisement

Applied physics

, Volume 12, Issue 3, pp 277–281 | Cite as

Peltier cooled PbSe double-heterostructure lasers for IR-gas spectroscopy

  • H. Preier
  • M. Bleicher
  • W. Riedel
  • H. Pfeiffer
  • H. Maier
Contributed Papers

Abstract

PbS−PbSe−PbS double-heterostructure lasers have been pulse-operated at about 200 K mounted on 4 stage thermoelectric coolers. Emitting at a wavelength of about 5.5 μm they could be used for NO gas spectroscopy. Operation temperatures of up to 230 K have been achieved with structures consisting ofn-type PbS substrates and epitaxial layers ofn-type PbSe and Tl dopedp-type PbS. The temperature dependence of the threshold current density and the emission wavelength of these DH-lasers was compared with PbSe-homojunction lasers. The use of a germanium etalon for a quick evaluation of the spectral quality of the emitted radiation is described.

PACS Code

42.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.D.Hinkley, K.W.Nill, F.A.Blum: InLaser Spectroscopy of Atoms and Molecules, ed. by H.Walter: Topics in Applied Physics, Vol. 2 (Springer, Berlin, Heidelberg, New York 1976) p. 125Google Scholar
  2. 2.
    E.D.Hinkley, R.T.Ku, K.W.Nill, J.F.Butler: Appl. Opt.15, 1653 (1976)ADSGoogle Scholar
  3. 3.
    H.Preier, W.Riedel: Appl. Phys. Lett.25, 55 (1974)CrossRefGoogle Scholar
  4. 4.
    S.H.Groves, K.W.Nill, A.J.Strauss: Appl. Phys. Lett.25, 331 (1974)CrossRefGoogle Scholar
  5. 5.
    J.N.Walpole, A.R.Calawa, T.C.Harman, S.H.Groves: Appl. Phys. Lett.28, 552 (1976)CrossRefADSGoogle Scholar
  6. 6.
    H.Preier, M.Bleicher, W.Riedel, H.Maier: Appl. Phys. Lett.28, 669 (1976)CrossRefADSGoogle Scholar
  7. 7.
    H.Preier, M.Bleicher, W.Riedel, H.Maier: J. Appl. Phys. to be published in the December 1976 issueGoogle Scholar
  8. 8.
    M.Bleicher, D.Wurzinger, H.Maier, H.Preier: J. Mater. Sci. to be publishedGoogle Scholar
  9. 9.
    H.Maier, D.Daniel, H.Preier: J. Crystal Growth35, 121 (1976)CrossRefGoogle Scholar
  10. 10.
    E.D.Palik, D.L.Mitchell, J.N.Zemel: Phys. Rev.135, A 763 (1964)CrossRefADSGoogle Scholar
  11. 11.
    A.J.Strauss: Phys. Rev.157, 608 (1967)CrossRefADSGoogle Scholar
  12. 12.
    T.C.Harman, A.R.Calawa, I.Melngailis, J.O.Dimmock: Appl. Phys. Lett.14, 333 (1969)CrossRefGoogle Scholar
  13. 13.
    R.Dalven: Infrared Phys.9, 141 (1969)CrossRefGoogle Scholar
  14. 14.
    Yu.I.Ravich, B.A.Efimova, I.A.Smirnov:Semiconducting Lead Chalcogenides (Plenum Press, New York, London 1970) p. 207Google Scholar
  15. 15.
    G.Lippmann, P.Kästner, W.Wanninger: Phys. Stat. Sol. (a)6, K 159 (1971)CrossRefGoogle Scholar
  16. 16.
    J.M.Besson, W.Paul, A.R.Calawa: Phys. Rev.173, 699 (1968)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. Preier
    • 1
  • M. Bleicher
    • 1
  • W. Riedel
    • 1
  • H. Pfeiffer
    • 1
  • H. Maier
    • 1
  1. 1.AEG-TELEFUNKEN ForschungsinstitutFrankfurt/MainFed. Rep. Germany

Personalised recommendations