Advertisement

Global solutions describing the collapse of a spherical or cylindrical cavity

  • P. L. Sachdev
  • Neelam Gupta
  • D. S. Ahluwalia
Original Papers
  • 39 Downloads

Abstract

The collapse of a spherical (cylindrical) cavity in air is studied analytically. The global solution for the entire domain between the sound front, separating the undisturbed and the disturbed gas, and the vacuum front is constructed in the form of infinite series in time with coefficients depending on an “appropriate” similarity variable. At timet=0+, the exact planar solution for a uniformly moving cavity is assumed to hold. The global analytic solution of this initial boundary value problem is found until the collapse time (=(γ−1)/2) for γ ≤ 1+(2/(1+v)), wherev=1 for cylindrical geometry, andv=2 for spherical geometry. For higher values of γ, the solution series diverge at timet — 2(β−1)/ (v(1+β)+(1−β)2) where β=2/(γ−1). A close agreement is found in the prediction of qualitative features of analytic solution and numerical results of Thomaset al. [1].

Keywords

Mathematical Method Close Agreement Global Solution Similarity Variable Solution Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. P. Thomas, V. Pais, R. Gratton and J. Diez. Phys. Fluids21, 676 (1986).Google Scholar
  2. [2]
    P. L. Sachdev,Nonlinear Diffusive Waves, Cambridge University Press, New York 1987.Google Scholar
  3. [3]
    K. P. Stanyokovich,Unsteady Motion of Continuous Media, Pergamon Press, New York 1960.Google Scholar
  4. [4]
    H. P. Greenspan and D. S. Butler, J. Fluid Mech.13, 101 (1962).Google Scholar
  5. [5]
    S. P. Bautin, J. Appl. Math. & Mech.46, 50 (1982).Google Scholar
  6. [6]
    E. Hille,Ordinary Differential Equations in the Complex Plane, John Wiley & Sons, New York 1972.Google Scholar
  7. [7]
    C. Hunter, J. Fluid Mech.15, 289 (1962).Google Scholar
  8. [8]
    J. Abiowitz, A. Ramani and H. Segur, J. Math. Phys.21, 715 (1980).Google Scholar
  9. [9]
    R. B. Lazarus, Phys. Fluids25, 1146 (1982).Google Scholar
  10. [10]
    S. P. Bautin, Diff. Eqs.12, 2052 (1976).Google Scholar
  11. [11]
    R. B. Lazarus, SIAM J. Num. Anal.18, 316 (1981).Google Scholar
  12. [12]
    A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier,Qualitative Theory of Second Order Dynamic Systems, John Wiley & Sons, New York 1973.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • P. L. Sachdev
    • 1
  • Neelam Gupta
    • 2
  • D. S. Ahluwalia
    • 3
  1. 1.Dept of MathematicsIndian Institute of ScienceBangalore
  2. 2.Dept of Chemical EngineeringIndian Institute of TechnologyBombayIndia
  3. 3.Dept of MathematicsNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations