Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 105, Issue 4, pp 712–725 | Cite as

Synthese und Struktur von assoziiertem μ-Phosphinodiboran und von phosphorsubstituierten Derivaten

  • H. Hofstötter
  • E. Mayer
Anorganische, Struktur- und Physikalische Chemie

Synthesis and structure of associated μ-phosphinodiborane and of derivatives substituted on phosphorus

Abstract

Associated μ-phosphinodiborane, (μ-H2PB2H5)n, is formed in the reaction of H2P(BH3)2Na with HCl in diethyl ether solution at −96°C. The formation of B−H−B bridges is demonstrated by IR and11B-NMR spectra. (μ-H2PB2H5)n decomposes thermally to diborane and polymeric phosphinoborane analogous to μ-H2NB2H5. Other phosphorus substituted μ-phosphinodiboranes associated via B−H−B bridges are formed in the reaction of the salts (CH3)PH(BH3)2Li, (CH3)2P(BH3)2Li, andPhPH(BH3)2Li with HCl.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    H. Hofstötter undE. Mayer, Angew. Chem.85, 410 (1973).CrossRefGoogle Scholar
  2. 2.
    Y. Matsui undR. C. Taylor, J. Amer. Chem. Soc.90, 1363 (1968).CrossRefGoogle Scholar
  3. 3.
    E. L. Muetterties, N. E. Miller, K. J. Packer undH. C. Miller, Inorg. Chem.3, 870 (1964).CrossRefGoogle Scholar
  4. 4.
    D. F. Gaines undR. Schaeffer, J. Amer. Chem. Soc.85, 395 (1963).CrossRefGoogle Scholar
  5. 5.
    G. R. Eaton undW. N. Lipscomb, NMR Studies of Boron Hydrides and Related Compounds. New York: Benjamin, 1969.Google Scholar
  6. 6.
    A. B. Burg undH. Heinen, Inorg. Chem.7, 1021 (1968);I. B. Misha undA. B. Burg, Inorg. Chem.11, 664 (1972).CrossRefGoogle Scholar
  7. 7.
    R. Schaeffer, F. Tebbe undC. Philipps, Inorg. Chem.3, 1475 (1964).CrossRefGoogle Scholar
  8. 8.
    R. W. Rudolph, R. W. Parry undC. F. Farran, Inorg. Chem.5, 723 (1966).CrossRefGoogle Scholar
  9. 9.
    E. Mayer undR. E. Hester, Spectrochim. Acta25 A, 237 (1969).CrossRefGoogle Scholar
  10. 10.
    J. Davis undJ. E. Drake, J. Chem. Soc.A 1970, 2959.Google Scholar
  11. 11.
    D. E. Mann, J. Chem. Phys.22, 70 (1954).CrossRefGoogle Scholar
  12. 12.
    P. C. Keller, Inorg. Chem.8, 2457 (1969).CrossRefGoogle Scholar
  13. 13.
    J. E. Drake undJ. Simpson, J. Chem. Soc.A 1968, 974.Google Scholar
  14. 14.
    E. Beckmann undP. Waentig, Z. anorg. Chem.67, 17 (1910).CrossRefGoogle Scholar
  15. 15.
    H. H. Lindner undT. Onak, J. Amer. Chem. Soc.88, 1890 (1966).CrossRefGoogle Scholar
  16. 16.
    D. F. Gaines undR. Schaeffer, J. Amer. Chem. Soc.86, 1505 (1964).CrossRefGoogle Scholar
  17. 17.
    B. M. Rode undH. Hofstötter, Mh. Chem.104, 1090 (1973).Google Scholar
  18. 18.
    E. Mayer undA. W. Laubengayer, Mh. Chem.101, 1138 (1970).Google Scholar
  19. 19.
    L. D. Schwartz undP. C. Keller, Inorg. Chem.10, 645 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. Hofstötter
    • 1
  • E. Mayer
    • 1
  1. 1.Institut für Anorganische und Analytische ChemieUniversität InnsbruckInnsbruckÖsterreich

Personalised recommendations