Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Equations of the theory of plasticity with one-velocity dislocation flow

  • 30 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    R. De Witt, Continuum Theory of Dislocations [Russian translation]. Mir, Moscow (1977).

  2. 2.

    L. I. Sedov, Continuum Mechanics, Vol. 2, Nauka, Moscow (1973).

  3. 3.

    A. M. Kosevich, Dislocations in the Theory of Elasticity [in Russian], Naukova Dumka, Kiev (1978).

  4. 4.

    Sh. Kh. Khannanov, “Kinetics of continuously distributed dislocations,” Fiz. Met. Metalloved.,46, No. 4 (1978).

  5. 5.

    Sh. Kh. Khannanov, Kinetics of Dislocations and Disclinations, Fiz. Met. Metalloved.,49, No. 1, (1980).

  6. 6.

    J. Freidel, Dislocations [Russian translation], Mir, Moscow (1967).

  7. 7.

    E. Kossecka and R. De Witt, “Disclination dynamics,” Arch. Mech.,29, No. 6 (1977).

  8. 8.

    M. F. Ashby, “The deformation of plastically nonhomogeneous alloys,” in: Strengthening Methods in Crystals, Wiley, New York (1971).

  9. 9.

    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

  10. 10.

    G. Libovitz (ed.), Fracture [Russian translation], Vol. 2, Mir, Moscow (1975).

  11. 11.

    G. E. Dieter, “Strengthening effect caused by shock waves,” in: Mechanisms of the Strengthening of Solids, Metallurgiya, Moscow (1965).

  12. 12.

    N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Equations in Partial Derivatives in Mathematical Physics [in Russian], Vyssh. Shkola, Moscow (1970).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 135–141, July–August, 1986.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khannanov, S.K. Equations of the theory of plasticity with one-velocity dislocation flow. J Appl Mech Tech Phys 27, 608–613 (1986). https://doi.org/10.1007/BF00910209

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Dislocation Flow