Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical investigation of the thermochemical degradation of graphite in a high-enthalpy air flow

  • 21 Accesses

  • 5 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    Park, “Effect of atomic oxygen on graphite ablation,” Raketn. Tekh. Kosmon.,14, No. 11 (1976).

  2. 2.

    Baker, “Effect of nonequilibrium chemical processes on graphite sublimation,” Raketn. Tekh. Kosmon.,15, No. 10 (1977).

  3. 3.

    N. A. Anfimov, “Combustion of graphite in a high-temperature air flow,” Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk, Mekh. Mashinostr., No. 5 (1964).

  4. 4.

    V. V. Shchennikov, “Calculation of a laminar boundary on a sublimating surface,” Zh. Vysshl. Mat. Mat. Fiz.,1, No. 5 (1961).

  5. 5.

    F. S. Zavelevich, “Combustion of graphite in a chemically equilibrium boundary layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1966).

  6. 6.

    Kendall and Bartlett, “Solution of the problem of a multicomponent boundary layer by the integral matrix method,” Raketn. Tekh. Kosmon.,6, No. 6 (1968).

  7. 7.

    Skala and Gilbert,. “Sublimation of graphite at hypersonic speeds,” Raketn. Tekh. Kosmon.,3, No. 9 (1965).

  8. 8.

    J. R. Baron and H. Bernstein, “Heterogeneous rate coupling for graphite oxidation,” AIAA Paper No. 70-832 (1970).

  9. 9.

    B. V. Alekseev, The Boundary Layer with Chemical Reactions [in Russian], Computer Center Acad. Sci. USSR, Moscow (1967).

  10. 10.

    A. G. Gofman, A. D. Gruzin, and S. I. Pyrkh, “Nonequilibrium multicomponent boundary layer on a sublimating carbon-graphite surface,” ChMMSS, Novosibirsk: ITPM Sib. Otd. Akad. Nauk SSSR,11, No. 6 (1980).

  11. 11.

    J. H. Lundell and R. R. Dickey, “Graphite ablation at high temperatures,” AIAA Paper No. 71-418 (1971).

  12. 12.

    Lundell and Dickey, “Ablation of ATJ graphite at high temperatures,” Raketn. Tekh. Kosmon.,11, No. 2 (1973).

  13. 13.

    O. N. Suslov, G. A. Tirskii, and V. V. Shchennikov, “Description of chemical equilibrium flows of multicomponent Ionized mixtures within the framework of the Navier-Stokes and Prandtl equations,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1971).

  14. 14.

    E. A. Gershbein, “Laminar multicomponent boundary layer at high injection rates,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1970).

  15. 15.

    V. G. Gromov, “Calculation of the viscous hypersonic flow over a sphere of a gas mixture containing carbon dioxide,” Nauchn. Trudy In-ta Mekhaniki MGU, No. 5 (1970).

  16. 16.

    Thermodynamic Properties of Individual Substances [in Russian], Nauka, Moscow, Vol. 1, Book 2 (1978); Vol. 2, Book 2 (1979).

  17. 17.

    A. M. Grishin and V. N. Bertsun, “Iteration-interpolation method and the theory of splines,” Dokl. Akad. Nauk SSSR,214, No. 4 (1974).

  18. 18.

    V. G. Gromov, “Calculation of a laminar boundary layer in the presence of nonequilibrium reactions,” In: New Applications of the Method of Nets in Gas Dynamics, No. 1 [in Russian], Moscow State University, Moscow (1971).

  19. 19.

    N. F. Krasnov, Aerodynamics [in Russian], Vysshaya Shkola, Moscow (1971).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 107–114, July–August, 1984.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gofman, A.G., Grishin, A.M. Theoretical investigation of the thermochemical degradation of graphite in a high-enthalpy air flow. J Appl Mech Tech Phys 25, 598–605 (1984). https://doi.org/10.1007/BF00909998

Download citation


  • Graphite
  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Theoretical Investigation