Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Three-dimensional diffusive boundary-layer problems

  • 36 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. D. Polyanin, “Diffusive interaction of solid particles at large Peclet numbers,” Prikl. Mat. Mekh.,42, No. 2 (1978).

  2. 2.

    A. D. Polyanin, “Diffusive interaction of droplets in liquid,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1978).

  3. 3.

    A. D. Polyanin and P. A. Pryadkin, “Two problems of convective diffusion to the surface of bluff bodies,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1978).

  4. 4.

    V. M. Voloshuk, “Fundamental solution to diffusive boundary layer,” Proc. of the Institute of Experimental Metrology, No. 3(37) (1973).

  5. 5.

    V. M. Voloshuk and Yu. S. Sedunov, Coagulation Processes in Dispersive Systems [in Russian], Gidrometeoizdat, Leningrad (1975).

  6. 6.

    G. K. Batchelor, “Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution,” J. Fluid Mech.,95, No. 2 (1979).

  7. 7.

    A. Acrivos, “Solution of the laminar boundary-layer energy equation at high Peclet numbers,” Phys. Fluids,3, No. 4 (1960).

  8. 8.

    A. Acrivos and J. D. Goddard, “Asymptotic expansions for laminar forced convection heat and mass transfer. Part 1, Low speed flows,” J. Fluid Mech.,23, No. 2 (1965).

  9. 9.

    Yu. P. Gupalo, A. D. Polyanin, and Yu. S. Ryazantsev, “Diffusion to particles at large Peclet numbers in case of arbitrary axisymmetric viscous flow,” Prikl. Mat. Mekh.,40, No. 5 (1976).

  10. 10.

    A. D. Polyanin and Yu. N. Syskov, “Diffusion to cylinder in the case of arbitrary viscous flow. Approximation for diffusive boundary layer,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1976).

  11. 11.

    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, London (1967).

  12. 12.

    Yu. P. Gupalo and Yu. S. Ryazantsev, “Diffusion to particle in the case of viscous shear flow. Approximation for diffusive boundary layer,” Prikl. Mat. Mekh.,36, No. 3 (1972).

  13. 13.

    C. G. Poe, Closed Streamline Flows Past Rotating Particles: Inertial Effects, Lateral Migration, Heat Transfer, Ph. D. Dissertation, Stanford University (1975).

  14. 14.

    H. Bateman and E. Erdelyi, Higher Transcendental Functions, Vol. 1 [in Russian], Nauka, Moscow (1973) [McGraw-Hill].

  15. 15.

    A. T. Chwang and Wu. T. Yao-Tsu, “Hydromechanics of low Reynolds number flow. Pt. 2, Singularity method for Stokes' flows,” J. Fluid Mech.,67, No. 4 (1975).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fizlki, No. 4, pp. 71–81, July–August, 1984.

The author acknowledges useful discussions with Yu. P. Gupalo and Yu. S. Ryazantsev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polyanin, A.D. Three-dimensional diffusive boundary-layer problems. J Appl Mech Tech Phys 25, 562–571 (1984).

Download citation


  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic