The moon and the planets

, Volume 20, Issue 3, pp 281–300

Emplacement of Fahrenheit craterejecta at the luna-24 site

  • Mark Settle
  • Mark J. Cintala
  • James W. Head
Article

Abstract

The Luna-24 site is situated in Mare Crisium at a range of 18.4 km from Fahrenheit, an Eratosthenian-aged crater 6.4 km in diameter. Fahrenheit's ejecta deposits have been degraded to such an extent that secondary craters and rays cannot be unambiguously identified in the vicinity of the Luna-24 site. On the basis of an analogy between Fahrenheit and Lichtenberg B (a much younger crater of comparable size located in northern Oceanus Procellarum) Fahrenheit ejecta deposits near the sample site are inferred to have consisted of secondary crater clusters, subradially aligned secondary crater chains, and lineated terrain furrowed by fine-scale radial grooves. At the range of the Luna-24 site more than 80% of the mare surface should have been morphologically disturbed by the ballistic deposition of Fahrenheit ejecta. Blocks and fragment clusters of primary Fahrenheit ejecta ranging up to 5–20 m in diameter are inferred to have impacted the local surface at velocities of 165–230 m s−1 forming secondary craters ranging up to 100 m in diameter. The maximum depth of excavation of primary Fahrenheit ejecta deposited near the sample site is estimated to be at least 100 m. Primary Fahrenheit ejecta is expected to constitute a substantial fraction of the exterior deposits emplaced at the range of the Luna-24 site. Microgabbro and monomineralic fragments discovered in the Luna-24 drill core may have been derived from gabbroic rocks transported to the sample site by the Fahrenheit cratering event. This hypothesis is consistent with the widespread occurrence and characteristics of Fahrenheit ejecta anticipated in the vicinity of the Luan-24 site. Current interpretations of the drill core sample suggest that the Luna-24 regolith was deposited in its present configuration sometime during the last 0.3 AE implying that at least one local cratering event has occurred since the emplacement of Fahrenheit ejecta ∼2.0±0.5 AE ago.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsukov, V. L.: 1977, ‘Preliminary Data for the Regolith Core Brought to Earth by the Automatic Lunar Station Luna 24’,Proc. 8th Lunar Sci. Conf., pp. 3303–3318.Google Scholar
  2. Basu, A., McKay, D. S., and Fruland, R.M.: 1978, ‘Petrography, Mineralogy and Source Rocks of Luna 24 Drill Core Soils’, inMare Crisium: The View from Luna 24, Pergamon Press, New York, pp.321–338.Google Scholar
  3. Bence, A. E. and Grove, T. L.: 1977, ‘The Highland Component in the Luna 24 Core’ (abs.), Conference on Luna 24, Lunar and Planetary Institute, Houston, Tex, pp. 22–24.Google Scholar
  4. Bogard, D. D. and Hirsch, W. C.: 1978, ‘Noble Gases in Luna 24 Core Soils’, inMare Crisium: The View from Luna 24, Pergamon Press, New York, pp. 105–116.Google Scholar
  5. Boyce, J. M.: 1976, ‘Ages of Flow Units in the Lunar Nearside Maria Based on Lunar Orbiter IV Photographs’,Proc. 7th Lunar Sci. Conf., pp. 2717–2728.Google Scholar
  6. Boyce, J. M. and Johnson, D. A.: 1977, ‘Age of Flow Units in Mare Crisium Based on Crater Density’,Proc. 8th Lunar Sci. Conf., pp. 3495–3502.Google Scholar
  7. Butler, P. and Morrison, D. A.: 1977, ‘Geology of the Luna 24 Landing Site’,Proc. 8th Lunar Science Conf., pp. 3281–3301.Google Scholar
  8. Culp, F. L. and Hooper, H. L.: 1961, ‘Study of Impact Cratering in Sand’,J. Appl. Phys. 32, 2488–2484.Google Scholar
  9. Dence, M. R.: 1973, ‘Dimensional Analysis of Impact Structures’,Meteoritics 8, 343–344.Google Scholar
  10. Dence, M. R., Grieve, R. A. F., and Robertson, P. B.: 1977, ‘Terrestrial Impact Structures: Principal Characteristics and Energy Considerations’, in D. J. Roddy, R. O. Pepin, and R. B. Merrill (eds.),Impact and Explosion Cratering, Pergamon Press, New York, pp. 247–275.Google Scholar
  11. Florensky, C. P., Basilevsky, A. T., Ivanov, A. V., Pronin, A. A., Rode, O. D.: 1977, ‘Luna 24: Geologic Settling of Landing Site and Characteristics of Sample Core’ (Preliminary Data),Proc. 8th Lunar Sci. Conf., pp. 3257–3279.Google Scholar
  12. Gault, D. E., Quaide, W. L., and Oberbeck, V. R.: 1968, ‘Impact Cratering Mechanics and Structures’, in B. M. French and N. M. Short (eds.),Shock Metamorphism of Natural Materials, Mono Book Corp., Baltimore, Md., pp. 87–99.Google Scholar
  13. Gault, D. E. and Wedekind, J. A.: 1977, ‘Experimental Hypervelocity Impact into Quartz Sand-II, Effects of Gravitational Acceleration’, in D. J. Roddy, R. O. Pepin, and R. B. Merrill (eds.),Impact and Explosion Cratering, Pergamon Press, New York, pp. 1231–1244.Google Scholar
  14. Grove, T. L. and Bence, A. E.: 1977, ‘Petrogenesis of Gabbros from Mare Crisium’ (abs.), Conference on Luna 24, Lunar and Planetary Institute, Houston, Tex., pp. 64–67.Google Scholar
  15. Head, J. W.: 1975, ‘Processes of Lunar Crater Degradation: Changes in Style with Geologic Time’,The Moon 12, 299–329.Google Scholar
  16. Head, J. W., Adams, J. B., McCord, T. B., Pieters, C., and Zisk, S.: 1978, ‘Regional Stratigraphy and Geologic History of Mare Crisium’, inMare Crisium: The View from Luna 24, Pergamon Press, New York, pp. 43–74.Google Scholar
  17. Ivanov, B. A. and Comissarova, L. I.: 1977, ‘The Simple Hydrodynamic Model of Cratering’, (abs.),Lunar Science VIII, Lunar and Planetary Institute, Houston, Tex., pp. 499–501.Google Scholar
  18. McGetchin, T. R., Settle, M., and Head, J. W.: 1973, ‘Radial Thickness Variation in Impact Crater Ejecta: Implications for Lunar Basin Deposits’,Earth Planet. Sci. Letters 20, 226–236.Google Scholar
  19. McKay, D. S., Basu, A., and Waits, G.: 1978, ‘Grain Size and Evolution of Luna 24 Soils’, inMare Crisium: The View from Luna 24, Peramon Press, New York, pp. 125–136.Google Scholar
  20. Moore, H. J.: 1976, ‘Missle Impact Craters (White Sands Missle Range, New Mexico) and Applications to Lunar Research’, U.S. Geological Survey Prof. Paper 812-B, p. B1–47.Google Scholar
  21. Moore, H. J., Hodges, C. A., and Scott, D. H.: 1974, ‘Multiringed Basins-Illustrated by Orientale and Associated Features’,Proc. 5th Lunar Sci. Conf., pp. 71–100.Google Scholar
  22. Moore, J. G. and Evans, B. W.: 1967, ‘The Role of Olivane in the Crystallization of the Prehistoric Makaopuhi Tholeiitic Lava Lake, Hawaii’,Contrib. Mineral. Petrol.,15, 202–223.Google Scholar
  23. Morris, R. V.: 1978, ‘FMR and Magnetic Studies of Luna 24 Soils and > 1 mm Soil Particles’, inMare Crisium: The View from Luna 24, Pergamon Press, New York, pp. 117–124.Google Scholar
  24. Morrison, R. H. and Oberbeck, V. R.: 1975, ‘Geomorphology of Crater and Basin Deposits-Emplacement of the Fra Mauro Formation’,Proc. 6th Lunar Sci. Conf, pp. 2503–2530.Google Scholar
  25. Nakamura, Y., Dorman, J., Duennebier, F., Lammlein, D., and Latham, G.: 1975, ‘Shallow Lunar Structure Determined from the Passive Seismic Experiment’,The Moon,13, 57–66.Google Scholar
  26. Neukum, G. and König, B.: 1976, ‘Dating of Individual Lunar Craters’,Proc. 7th Lunar Sci. Conf., pp. 2867–2881.Google Scholar
  27. Oberbeck, V. R., Morrison, R. H., Hörz, F., Quaide, W. L., Gault, D. E.: 1974, ‘Smooth Planis and Continuous Deposits of Craters and Basins’,Proc. 5th Lunar Sci. Conf., pp. 111–136.Google Scholar
  28. Oberbeck, V. R., Hörz, F., Morrison, R. H., Quaide, W. L., and Gault, D. E.: 1975, ‘On the Origin of Lunar Smooth Plains’,The Moon 12, 19–54.Google Scholar
  29. Offield, T. W. and Pohn, H. A.: 1970, ‘Lunar Crater Morphology and Relative Age Determination of Lunar Geologic Units, Part II, Applications’, U.S. Geological Survey Prof. Paper 700-C, p. C 163–169.Google Scholar
  30. O'Keefe, J. D. and Ahrens, T. J.: 1976, ‘Impact Ejecta on the Moon’,Proc. 7th Lunar Sci. Conf., pp. 3007–3025.Google Scholar
  31. Pike, R. J.: 1974, ‘Ejecta from Large Craters on the Moon: Comments on the Geometric Model of McGetchin et al.,Earth Planet Sci. Letters 23, 265–271.Google Scholar
  32. Pike, R. J.: 1976, ‘Crater Dimensions from Apollo Data and Supplemental Sources’,The Moon 15, 463–477.Google Scholar
  33. Pike, R. J.: 1977a, ‘Size Dependence in the Shape of Fresh Impact Craters on the Moon’, in D. J. Roddy, R. O. Pepin, and R. B. Merrill (eds.),Impact and Explosion Cratering, Pergamon Press, New York, pp. 489–509.Google Scholar
  34. Pike, R. J.: 1977b, ‘Apparent Depth/Apparent Diameter Relation for Lunar Craters’Proc. 8th Lunar Sci. Conf., pp. 3427–3436.Google Scholar
  35. Pike, R. J. and Wilhelms, D. E.: 1978, ‘Secondary Impact Craters on the Moon: topographic Form and Geologic Process’. (abs.),Lunar and Planetary Science IX, pp. 907–909, Lunar and Planetary Institute, Houston, Tex.Google Scholar
  36. Pohn, H. A. and Offield, T. W.: 1970, ‘Lunar Crater Morphology and Relative Age Determination of Lunar Geologic Units, Part I, Classification’, U.S. Geological Survey Prof. Paper 700-C, p. C 153–162.Google Scholar
  37. Quaide, W. and Oberbeck, V.: 1975, ‘Development of the Mare Regolith: Some Model Considerations’,The Moon 13, 27–55.Google Scholar
  38. Roddy, D. J., Boyce, J. M., Colton, G. W., and Dial, A. L.: 1975, ‘Meteor Crater, Arizona, Rim Drilling with Thickness, Structural Uplift, Diameter, Depth, Volume, and Mass-Balance Calculations’,Proc. 6th Lunar Sci. Conf., pp. 2621–2644.Google Scholar
  39. Settle, M. and Head, J. W.: 1977, ‘Radial Variation of Lunar Crater Rim Topography’,Icarus 31, 123–135.Google Scholar
  40. Stoffler, D., Dence, M. R., Graup, G., and Abadian, M.: 1974, ‘Interpretation of Ejecta Foramtions at the Apollo 14 and 16 Sites by a Comparative Analysis of Experimental Terrestrial, and Lunar Craters’,Proc. 5th Lunar Sci. Conf., pp. 137–150.Google Scholar
  41. Stöffler, D., Gault, D. E., Wedekind, J., and Polkowski, G.: 1975, ‘Experimental Hypervelocity Impact into Quartz Sand: Distribution and Shock Metamorphism of Ejecta’,J. Geophys. Res. 80, 4062–4077.Google Scholar
  42. Swann, G. A. and Reed, V. S.: 1974, ‘A Method for Estimating the Absolute Ages of Small Copernican Craters and its Application to the Determination of Copernican Meteorite Flux’,Proc. 5th Lunar Sci. Conf., pp. 151–158.Google Scholar
  43. Tarasov, L. S., Nazarov, M. A., Shevaleevsky, I. D., Kidryashova, A. F., Gaverdovskaya, A. S., and Korina, M. I.: 1977, ‘Mineralogy and Petrography of Lunar Rocks from Mare Crisium’, (Preliminary Data),Proc. 8th Lunar Science Conf., pp. 3333–3356.Google Scholar
  44. Trask, N. J.: 1971, ‘Geologic Comparisons of Mare Materials in the Lunar Equatorial Belt, Including Apollo 11 and Apollo 12 Landing Sites’, U.S. Geological Survey Prof. Paper 750-D, p. D 138–148.Google Scholar
  45. Ulrich, G. E., Moore, H. J., Reed, V. S., Wolfe, E. W., and Larson, K. B.: 1975, ‘Distribution of Ejecta from South Ray Crater’ (abs.),Lunar Science VI, pp. 832–834, Lunar and Planetary Institute, Houston, Tex.Google Scholar
  46. Viktorov, V. V. and Stepenov, R. D.: 1960,Inzh. Bs. 28, 87–96, transl. by M. I. Weinrich, SCLT-392, Sandia Corporation, Albuquerque, N.M., 1961.Google Scholar
  47. Wasserburg, G. J., DiBrozolo, F. R., Papanastassiou, D. A., McCulloch, M. T., Huneke, J. C., Dymek, R. F., DePaolo, D. J., Chodos, A. A., and Albee, A. L.: 1978, ‘Petrology, Chemistry, Age and Irradiation History of Luna 24 Samples’, inMare Crisium: The View from Luna 24, Pergamon Press, New York, pp. 657–678.Google Scholar
  48. Whitaker, E. A.: 1972, ‘Lunar Color Boundaries and Their Relationship to Topographic Features: A Preliminary Survey’,The Moon 4, 348–355.Google Scholar
  49. Whitford-Stark, J. L. and Head, J. W.: 1978, ‘Oceanus Procellarum: Preliminary Basalt Stratigraphy and Emplacement History’, (abs.),Lunar and Planetary Science IX, Lunar and Planetary Institute, Houston, Tex., pp. 1250–1252.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • Mark Settle
    • 1
  • Mark J. Cintala
    • 1
  • James W. Head
    • 1
  1. 1.Dept. of Geological SciencesBrown UniversityProvidenceUSA

Personalised recommendations