Monatshefte für Chemie / Chemical Monthly

, Volume 105, Issue 2, pp 241–253 | Cite as

Photolyse von Monophenylphosphat und e aq -Bildung in wäßriger Lösung

  • N. Getoff
  • Sonja Solar
Anorganische, Struktur- und Physikalische Chemie

Photolysis of monophenyl phosphate and formation of e aq in aqueous solution


At photolysis (253.7 nm) of monophenylphosphate (10−3m) in O2-free neutral aqueous solution were determined: orthophosphate (Φ=0.006), phenol (Φ=0.0029), besides of small amounts of phosphorous acid, benzene, 2.2′-dihydroxybiphenyl and traces of 2.4′- and 4.4′-dihydroxybiphenyl. The yield of the main products is smaller at pH 2 and 12. Polymers were formed at u.v.-doses >2·1019hv/ml. The electron yield determined by means of N2O increases from Φ (N2)= Φ(e aq )=0.012 to 0.019 changing the ester concentration from 0.001 to 0.1m. Φ (N2)-value rises by addition of methanol or increasing pH. As electron ejecting state an excited complex is postulated. The effective ionization potential of phenylphosphate in aqueous solution is ≦4.9 e.v.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bamann, K. Gubitz undH. Trapmann, Arch. Pharm.4, 240 (1961).Google Scholar
  2. 2.
    M. Halmann undI. Platzner, J. Chem. Soc.1965, 5380.Google Scholar
  3. 3.
    L. Kugel undM. Halmann, J. Amer. Chem. Soc.38, 3566 (1966).Google Scholar
  4. 4.
    J. Greenwald undM. Halmann, J. Chem. Soc.1972, 1095.Google Scholar
  5. 5.
    N. Getoff, Mh. Chem.99, 1136 (1968).Google Scholar
  6. 6.
    N. Getoff undG. O. Schenk, Photochem. Photobiol.8, 167 (1968).Google Scholar
  7. 7.
    R. N. Smith, Ph. A. Leigthon undW. G. Leighton, J. Amer. Chem. Soc.61, 2299 (1939).Google Scholar
  8. 8.
    C. A. Parker, Proc. Roy. Soc. [London]A 220, 104 (1953).Google Scholar
  9. 9.
    C. G. Hatchard undC. A. Parker, Proc. Roy. Soc. [London]A 235, 518 (1956).Google Scholar
  10. 10.
    J. G. Calvert undJ. N. Pitts, Jr., Photochemistry, S. 783. London: Wiley. 1966.Google Scholar
  11. 11.
    F. Cremer, Papierchromatographie, S. 135. Weinheim: Verlag Chemie. 1962.Google Scholar
  12. 12.
    H. Jatzkewitz undU. Lenz: Z. physiol. Chem.305, 53 (1956).Google Scholar
  13. 13.
    E. F. Mohler, Jr., undL. N. Jacob, Analyt. Chem.29, 1369 (1957).Google Scholar
  14. 14.
    J. P. Keene, Radiation Res.22, 1 (1964).Google Scholar
  15. 15.
    R. L. Willson, C. L. Greenstock, G. E. Adams, R. Wageman undL. M. Dorfman, Internat. J. Radiat. Phys. Chem.3, 211 (1971).Google Scholar
  16. 16.
    M. Sacher u. a., wird veröffentlicht.Google Scholar
  17. 17.
    G. Dobson undL. I. Grossweiner, Trans. Faraday Soc.61, 708 (1965).Google Scholar
  18. 18.
    H. I. Joschek undS. I. Miller, J. Amer. Chem. Soc.88, 3273 (1966).Google Scholar
  19. 19.
    J. Zechner u. a., wird veröffentlicht.Google Scholar
  20. 20.
    N. Getoff, Z. Naturforschg.17 b, 87 (1962).Google Scholar
  21. 21.
    J. Jortner, M. Ottolenghi undG. Stein, J. Amer. Chem. Soc.85, 2712 (1963).Google Scholar
  22. 22.
    A. Weller, in: Fast Reactions and Primary Processes in Chemical Kinetics (S. Cleasson, Hrsg.), S. 413. New York: Interscience. 1967.Google Scholar
  23. 23.
    T. R. Hopkins undR. Lumry, Photochem. Photobiol.15, 555 (1972).Google Scholar
  24. 24.
    G. Köhler, u. a., wird veröffentlicht.Google Scholar
  25. 25.
    J. W. Boyle, J. A. Ghormley, C. J. Hochanadel undJ. F. Riley, J. Phys. Chem.73, 2886 (1969).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • N. Getoff
    • 1
  • Sonja Solar
    • 1
  1. 1.Institut für Theoretische Chemie und Strahlenchemie der Universität wienWienÖsterreich

Personalised recommendations