Monatshefte für Chemie / Chemical Monthly

, Volume 107, Issue 4, pp 1043–1053 | Cite as

Mechanism of hydroformylation, part II Study of the formation of hydrocobalttetracarbonyl by the reaction of Co2(CO)8 and H2

  • Naim H. Alemdaroğlu
  • Johannes M. L. Penninger
  • Ernst Oltay
Organische Chemie und Biochemie


The kinetics and the position of the equilibrium of the reaction Co2(CO)8+H2⇄2 HCo(CO)4 were studied in the range of 80–160 °C and 50–100 atm. by means of in situ IR spectroscopy.

The reaction is reversible first order with respect to CO2(CO)8 and HCo(CO)4 and the energies of activation of the forward and the reverse reaction are found to be 17,3 cal/mole, and 11.0 kcal/mole resp.

The reaction is slightly endothermic with ΔH=6.6 kcal/mole and ΔS=14.6 e.u. The heat of formation of HCo(CO)4 and the bond strength between hydrogen and cobalt in HCo(CO)4 were found to be—146.1 kcal/mole and 54.7 kcal/mole resp.


Hydrogen Spectroscopy Physical Chemistry Analytical Chemistry Cobalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a).
    O. Roelen (Ruhr Chemie A.G., Process for Preparing valuable Oxo Compounds). a) Ger. P. Appl. R 10.3.362, R 402, Sept. 19, 1938;Google Scholar
  2. 1b).
    (Ruhr Chemie A.G.) Ger. Pat. 849.548 (1938);Google Scholar
  3. 1c).
    O. Roelen, Angew. Chem.A60, 213 (1948).Google Scholar
  4. 2.
    M. Orchin, L. Kirch, andI. Goldfarb, J. Amer. Chem. Soc.78, 5450 (1956).Google Scholar
  5. 3.
    M. Orchin andW. Rupilius, Catal. Rev.6, (1) 85–131 (1972).Google Scholar
  6. 4.
    R. Iwanaga, Bull. Chem. Soc. Japan35, 774 (1972).Google Scholar
  7. 5.
    V. Yu. Gankin, D. P. Krinkin, andD. M. Rudkovskij, Carbonylation of Unsaturated Hydrocarbons, 45 ff. ed. All Unions Res. Inst. for Petrochemical Proc., Leningrad Chemistry Department 1968.Google Scholar
  8. 6.
    F. Ungváry, J. Organometal. Chem.36, 363 (1972).Google Scholar
  9. 7.
    E. Oltay, J. M. L. Penninger, N. Alemdaroğlu, andJ. M. Alberigs, Anal. Chem.45, 802 (1973).Google Scholar
  10. 8.
    M. van Boven, N. Alemdaroğlu, andJ. M. L. Penninger, J. Organometal Chem.84, 65 (1975).Google Scholar
  11. 9.
    R. A. Friedel, I. Wender, S. L. Shufter, andH. W. Sternberg, J. Amer. Chem. Soc.77, 3951 (1955).Google Scholar
  12. 10.
    A. Cartner andB. Robinson, J. Chem. Soc. Comm.1973, 317.Google Scholar
  13. 11.
    D. R. Bidinotti andN. S. McIntyre, Canad. J. Chem.48, 593 (1970).Google Scholar
  14. 12.
    S. H. Maron andC. F. Pruton, Principal of Physical Chemistry, p. 151. Mac Millan. 1965.Google Scholar
  15. 13.
    J. Berty, E. Oltay, andL. Markó, Chem. Tech.9, 283 (1957).Google Scholar
  16. 14.
    I. Wender, H. W. Sternberg, S. Metlin, andM. Orchin, Inorganic Synthesis5, p. 190–192. New York: McGraw-Hill. 1957.Google Scholar
  17. 15.
    P. Szabó, L. Markó, andG. Bor, Chem. Techn. [Berlin]13, 549 (1961).Google Scholar
  18. 16.
    H. W. Sternberg, I. Wender, andM. Orchin, Anal. Chem.24, 174 (1952).Google Scholar
  19. 17.
    I. M. Kolthoff andP. J. Elvin, Treatise on Analytical Chemistry, Part II, Vol.2, p. 345. New York: Interscience. 1962.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Naim H. Alemdaroğlu
    • 1
  • Johannes M. L. Penninger
    • 1
  • Ernst Oltay
    • 1
  1. 1.Laboratory for Chemical TechnologyTwente University of TechnologyEnschedeNetherlands

Personalised recommendations