Applied physics

, Volume 9, Issue 2, pp 153–160 | Cite as

Substitutional-interstitial interactions in niobium-titanium alloys: An internal friction study

  • R. Cantelli
  • Z. C. Szkopiak
Contributed Papers


The influence of additions of interstitial oxygen and nitrogen on the internal friction spetrum of the niobium-1 at-% titanium alloy was studied. The nature of the various observed relaxation processes introduced by the presence of substitutional titanium is discussed. A thermodynamic analysis was carried out for two pronounced interaction peaks attributed to the stress-induced reorientation of single oxygen or nitrogen atoms around single titanium atoms and the respective binding energies were estimated. It was also found that, over the range of oxygen concentration studied, interstitial oxygen is completely removed from random migration by substitutional titanium atoms acting as trapping centres, whilst nitrogen population is always partitioned between mobile and trapped atoms even at very low relative nitrogen concentrationsC N/C Ti. A possible reason for the different behavior of oxygen and nitrogen is suggested.


Internal Friction Relaxation Spectrum Pure Niobium Snoek Peak Internal Friction Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.F.Hasson, R.J.Arsenault: InTreatise on Materials Science and Technology, ed. by H.Hermann (Academic Press, New York, 1972)Google Scholar
  2. 2.
    D.Mosher, C.Dollins, C.Wert: Acta Met.18, 797 (1970)CrossRefGoogle Scholar
  3. 3.
    J.D.Fast: Metaux Corrosion-Ind.36, 1 (1961)Google Scholar
  4. 4.
    C.Wert, J.Marx: Acta Med.1, 113 (1953)CrossRefGoogle Scholar
  5. 5.
    Z.C.Szkopiak, J.T.Smith: J. Phys. D (Appl. Phys.)8, 1273 (1975)CrossRefADSGoogle Scholar
  6. 6.
    C.E.Lundin,Jr., D.T.Klodt: Trans. ASM53, 735 (1961)Google Scholar
  7. 7.
    C.S.Wukusick: InRefractory Metals and Alloys, IV, Research and Development (Gordon and Breach, London, 1967) p. 231Google Scholar
  8. 8.
    R.Cantelli, Z.C.Szkopiak: Appl. Phys.Google Scholar
  9. 9.
    R.S.Ke: Phys. Rev.71, 533 (1947)CrossRefADSGoogle Scholar
  10. 10.
    M.S.Ahmad, D.E.Barrow, E.A.Little, Z.C.Szkopiak: J. Phys. D (Appl. Phys.)4, 1460 (1971)CrossRefADSGoogle Scholar
  11. 11.
    Z.C.Szkopiak: “Internal friction in Niobium-Oxygen Solid Solutions”, U.K.A.E.A. TGR Rept., 1151 (c/x) (1966)Google Scholar
  12. 12.
    Z.C.Szkopiak: J. Less-Common Metals19, 93 (1969)CrossRefGoogle Scholar
  13. 13.
    T.Gladman, F.B.Pickering: J. Iron Steel Inst.203, 1212 (1965)Google Scholar
  14. 14.
    L.D.Dijkstra, R.J.Sladek: Trans. AIME197, 69 (1953)Google Scholar
  15. 15.
    E.T.Stephenson. Trans. AIME233, 1183 (1965)Google Scholar
  16. 16.
    R.W.Powers, M.V.Doyle: J. Appl. Phys.28, 255 (1957)CrossRefGoogle Scholar
  17. 17.
    Z.C.Szkopiak: J. Phys. (French) Suppl. No. 7,32, C2–1 (1971)Google Scholar
  18. 18.
    P.M.Bunn, D.G.Cummings, H.W.Leavenworth,Jr.: J. Appl. Phys.33, 3009 (1962)CrossRefGoogle Scholar
  19. 19.
    M.G.Ulitchny, A.A.Sagues, R.Gibala: In Proc. Conf. on Defects in Refractory Metals, Mol (1971) p. 245Google Scholar
  20. 20.
    G.Szabo'-Miszenti: Acta Met.18, 477 (1970)CrossRefGoogle Scholar
  21. 21.
    J.K.Jackson, P.G.Winchell: Trans. AIME230, 216 (1964).Google Scholar
  22. 22.
    D.F.Hasson, R.J.Arsenault: Conf. Proc., Int. Conf. Strength Metals Alloys, 2nd,1, 267 (1970)Google Scholar
  23. 23.
    D.J.Ooijen, A.S.van derGoot: Philips Res. Rept.19, 505 (1964)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. Cantelli
    • 1
  • Z. C. Szkopiak
    • 1
  1. 1.Department of Metallurgy and Materials TechnologyUniversity of SurreyGuildfordUK

Personalised recommendations