Advertisement

Applied Microbiology and Biotechnology

, Volume 42, Issue 2–3, pp 375–384 | Cite as

Stability of pressure-extruded liposomes made from archaeobacterial ether lipids

  • C. G. Choquet
  • G. B. Patel
  • G. D. Sprott
  • T. J. Beveridge
Original Paper

Abstract

Ether lipids were obtained from a wide range of archaeobacteria grown at extremes of pH, temperature, and salt concentration. With the exception ofSulfolobus acidocaldarius, unilamellar and/or multilamellar liposomes could be prepared from emulsions of total polar lipid extracts by pressure extrusion through filters of various pore sizes. Dynamic light scattering, and electron microscopy revealed homogeneous liposome populations with sizes varying from 40 to 230 nm, depending on both the lipid source and the pore size of the filters. Leakage rates of entrapped fluorescent or radioactive compounds established that those archaeobacterial liposomes that contained tetraether lipids were the most stable to high temperatures, alkaline pH, and serum proteins. Most ether liposomes were stable to phospholipase A2, phospholipase B and pancreatic lipase. These properties of archaeobacterial liposomes make them attractive for applications in biotechnology.

Keywords

Lipid Lipase Pore Size Salt Concentration Dynamic Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen TM, Cleland LG (1980) Serum-induced leakage of liposome contents. Biochim Biophys Acta 597:418–426Google Scholar
  2. Agarwal K, Bali A, Gupta CM (1986) Influence of the phospholipid structure on the stability of liposomes in serum. Biochim Biophys Acta 856:36–40Google Scholar
  3. Beveridge TJ, Choquet CG, Patel GB, Sprott GD (1993) Freezefracture planes of methanogen membranes correlate with the content of tetraether lipids. J Bacteriol 175:1191–1197Google Scholar
  4. Blöcher D, Six L, Gutermann R, Henkel B, Ring K (1985) Physicochemical characterization of tetraether lipids from Thermoplasma acidophilum. Calorimetric studies on miscibility with diether model lipids carrying branched or unbranched alkyl chains. Biochim Biophys Acta 818:333–342Google Scholar
  5. Choquet CG, Patel GB, Beveridge TJ, Sprott GD (1992) Formation of unilamellar liposomes from total polar lipid extracts of methanogens. Appl Environ Microbiol 58:2894–2900Google Scholar
  6. Choquet CG, Richards JC, Patel GB, Sprott GD (1994) Purine and pyrimidine biosynthesis in methanogenic bacteria. Arch Microbiol in pressGoogle Scholar
  7. Elferink MGL, Wit JG de, Demel R, Driessen AJM, Konings WN (1992) Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J Biol Chem 267:1375–1381Google Scholar
  8. Fugman DA, Shirai K, Jackson RL, Johnson JD (1984) Lipoprotein lipase- and phospholipase A2-catalyzed hydrolysis of phospholipid vesicles with an encapsulated fluorescent dye. Biochim Biophys Acta 795:191–195Google Scholar
  9. Grey VL, Fitt PS (1976) An improved growth medium for Halobacterium cutirubrum. Can J Microbiol 22:440–442Google Scholar
  10. Grit M, Zuidam NJ, Crommelin DJA (1993) Analysis and hydrolysis kinetics of phospholipids in aqueous liposome dispersions. In: Gregoriadis G (ed) Liposome technology, vol 1. CRC Press, Boca Raton, Fl., pp 455–486Google Scholar
  11. Hafenbradl D, Keller M, Thiericke R, Stetter KO (1993) A novel archaeal ether core lipid from the hyperthermophileMethanopyrus kandleri. Syst Appl Microbiol 16: 165–169Google Scholar
  12. Kensil CR, Dennis EA (1985) Action of cobra venom phospholipase AZ on large unilamellar vesicles: comparison with small unilamellar vesicles and multibilayers. Lipids 20: 80–83Google Scholar
  13. Kloppel KD, Fredrickson HL (1991) Fast atom bombardment mass spectrometry as a rapid means of screening mixtures of etherlinked polar lipids from extremely halophilic archaebacteria for the presence of novel chemical structures. J Chromatog 562:369–376Google Scholar
  14. Langworthy TA (1985) Lipids of Archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8 Academic Press, New York, pp 459–497Google Scholar
  15. Lichtenberg D, Barenholz Y (1988) Liposomes: preparation, characterization and preservation. Methods Biochem Anal 33:337–462Google Scholar
  16. MacDonald RC, MacDonald RI, Menco BPhM, Takeshita K, Subbarao NK, Hu L (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochem Biophys Acta 1061:297–303Google Scholar
  17. Nayar R, Hope MJ, Cullis PR (1989) Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim Biophys Acta 986:200–206Google Scholar
  18. New RCC (1990a) Preparation of liposomes. In: New RCC (ed) Liposomes: a practical approach. IRL Press, Oxford, pp 33–104Google Scholar
  19. New RCC (1990b) Characterization of liposomes. In: New RCC (ed) Liposomes: a practical approach. IRL Press, Oxford, pp 105–162Google Scholar
  20. Nichols PD, Franzmann PD (1992) Unsaturated diether phospholipids in the Antarctic methanogenMethanococcoides burtonii. FEMS Microbiol Lett 98:205–208Google Scholar
  21. Patel GB, Choquet CG, Nash JHE, Sprott GD (1993) Formation and regeneration ofMethanococcus voltae protoplasts. Appl Environ Microbiol 59:27–33Google Scholar
  22. Patel GB, Sprott GD, Fein JE (1990) Isolation and characterization ofMethanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40: 12–18Google Scholar
  23. Ring K, Henkel B, Valenteijn A, Gutermann R (1986) Studies on the permeability and stability of liposomes derived from a membrane spanning bipolar archaebacterial tetraetherlipid. In: Schmidt KH (ed) Liposomes as drug carriers. Thieme, Stuttgart, pp 101–123Google Scholar
  24. Scherphof GL, Damen J, Wilschut J (1984) Interactions of liposomes with plasma proteins. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC Press, Boca Raton, Fla., pp 205–224Google Scholar
  25. Sprott GD (1992) Structures of archaebacterial membrane lipids. J Bioenerg Biomembr 24:555–566Google Scholar
  26. Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids inMethanococcus jannaschii grown at different temperatures. J Bacteriol 173: 3907–3910Google Scholar
  27. Stewart LC, Kates M, Ekiel I, Smith ICP (1990) Molecular order and dynamics of diphytanylglycerol phospholipids: a2H and31P-NMR study. Chem Phys Lipids 54:115–129Google Scholar
  28. Ueno M, Yoshida S, Horikoshi I (1991) Characteristics of the membrane permeability of temperature-sensitive liposome. Bull Chem Soc Jpn 64:1588–1593Google Scholar
  29. Weinstein, JN, Ralston E, Leserman LD, Klausner RD, Dragsten P, Henkart P, Blumenthal R (1984) Self-quenching of carboxyfluorescein fluorescence: uses in studying liposome stability and liposome-cell interaction. In: Gregoriadis G (ed) Liposome technology, vol 3. CRC Press, Boca Raton, Fla., pp 183–204Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. G. Choquet
    • 1
  • G. B. Patel
    • 1
  • G. D. Sprott
    • 1
  • T. J. Beveridge
    • 2
  1. 1.National Research Council of Canada (NRCC)Institute for Biological SciencesOttawaOntarioCanada
  2. 2.Department of Microbiology, College of Biological ScienceUniversity of GuelphGuelph, OntarioCanada

Personalised recommendations