Mathematical Geology

, Volume 18, Issue 8, pp 845–854 | Cite as

Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates

  • F. James Rohlf


Eigenshape analysis (a singular value decomposition of a matrix of the tangent angle function φ*(t)) has recently been proposed as an alternative to Fourier analysis for description of outline shapes of organisms. Whenall eigenvectors andall harmonics are retained both approaches represent orthogonal rotations of the same points. Thus distances between pairs of shapes (and any multivariate analyses based on distances) must be the same for both analyses. When true shapes are known to be smooth, dropping higher-order Fourier harmonics results in a desirable smoothing of the digitized outline and a large reduction in computational cost.

An alternative method of eigenshape analysis is presented and related to elliptical Fourier analysis and analysis of raw coordinates.

Key words

tangent angle function morphometrics outline shape singular value decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bookstein, F. L., Straus, R. E., Humphries, J. M., Chernoff, B. C., Elder, R. L., and Smith, G. R., 1982, A comment upon the uses of Fourier methods in systematics: Sys. Zool., v. 31, p. 85–92.Google Scholar
  2. Bookstein, F. L., Chernoff, B. C., Elder, R. L., Humphries, J. M., Smith, G. R., and Straus, R. E., 1985, Morphometrics in evolutionary biology: Special Publ. 15, Academy of Natural Sciences of Philadelphia, Philadelphia, 277 p.Google Scholar
  3. Bow, S.-T., 1984, Pattern recognition: Marcel Dekker, New York, 323 p.Google Scholar
  4. Evans, D. G., Schweitzer, P. N., and Hanna, M. S., 1985, Parametric cubic splines and geological shape descriptions: Math. Geol., v. 17, p. 611–624.Google Scholar
  5. Ferson, S., Rohlf, F. J., and Koehn, R. K., 1985, Measuring shape variation of two-dimensional outlines: Syst. Zool., v. 34, p. 59–68.Google Scholar
  6. Full, W. E. and Ehrlich, R., 1986, Fundamental problems associated with “eigenshape analysis” and similar “factor” analysis procedures: Math. Geol., v. 18, p. 451–463.Google Scholar
  7. Golub, G. H. and Reinsch, C., 1970, Singular value decomposition and least squares solutions: Num. Math., v. 14, p. 403–420.Google Scholar
  8. Gower, J. C., 1966, Some distance properties of latent root and vector methods used in multivariate analysis: Biometrika, v. 53, p. 325–338.Google Scholar
  9. Kuhl, F. P. and Giardina, C. R., 1982, Elliptic Fourier features of a closed contour: Comp. Graph. Image Proc., v. 18, p. 236–258.Google Scholar
  10. Lohmann, G. P., 1983, Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape: Math. Geol., v. 15, p. 659–672.Google Scholar
  11. Lohmann, G. P. and Malmgren, B. A., 1983, Equatorward migration ofGloborotalia truncatulinoides: Paleobiology, v. 9, p. 414–421.Google Scholar
  12. Moss, W. W. and Power, D. M., 1975, Semi-automatic data recording: Syst. Zool., v. 24, p. 199–208.Google Scholar
  13. Mulaik, S. A., 1972, The foundations of factor analysis: McGraw-Hill, New York, 453 p.Google Scholar
  14. Plowwright, R. C. and Stevens, W. P., 1973, A numerical taxonomic analysis of the evolutionary relationships ofBombus andPsithyrus (apidae: Hymenoptera): Canadian Entomol., v. 105, p. 733–743.Google Scholar
  15. Rohlf, F. J. and Archie, J., 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae): Syst. Zool., v. 33, p. 302–317.Google Scholar
  16. Schweitzer, P. N., Kaesler, R. L., and Lohmann, G. P., (1986, in press), Ontogeny and heterochrony in ostracodeCavellina Coryell: Paleobiology.Google Scholar
  17. Siegel, A. F. and Benson, R. H., 1982, A robust comparison of biological shapes: Biometrics, v. 38, p. 341–350.Google Scholar
  18. Strauss, R. E. and Bookstein, F. L., 1982, The truss: Body form reconstructions in morphometrics: Syst. Zool., v. 31, p. 113–135.Google Scholar
  19. Tunnicliffe-Wilson, G., 1984, Time series,in E. Lloyd (Ed.), Handbook of applicable mathematics, vol. VI, part B: John Wiley & Sons, New York, p. 783–846.Google Scholar
  20. Zahn, C. T. and Roskies, R. Z., 1972, Fourier descriptors for plane closed curves: IEEE Trans. Comput., v. C-21, p. 269–281.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • F. James Rohlf
    • 1
  1. 1.Department of Ecology and EvolutionState University of New YorkStony Brook

Personalised recommendations