Advertisement

Soviet Physics Journal

, Volume 33, Issue 7, pp 600–604 | Cite as

Free Schrödinger equation analyzed in terms of the wave equation

  • V. G. Bagrov
  • B. F. Samsonov
  • A. V. Shapovalov
Elementary Particle Physics and Field Theory
  • 24 Downloads

Abstract

The free time-dependent Schrödinger equation in three-dimensional space is analyzed as a special case of the wave equation in five-dimensional spacetime. This approach transforms the separation of variables in the parabolic Schrödinger equation into the separation of variables in a nonparabolic equation. Then one can solve the problem using the last theorem of V. N. Shapovalov (see Differents. Uravn., No. 10, 1864 (1980)) on the necessary and sufficient conditions for the complete separation of variables. Other advantages of this approach are also discussed.

Keywords

Wave Equation Complete Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Lierature cited

  1. 1.
    V. N. Shapovalov, V. G. Bagrov, and A. G. Meshkov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 45–50 (1972).Google Scholar
  2. 2.
    V. N. Shapovalov and N. B. Sukhomlin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 100–105 (1974).Google Scholar
  3. 3.
    V. N. Shapovalov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 27–33 (1974).Google Scholar
  4. 4.
    V. N. Shapovalov, Differents. Uravn., No. 10, 1864–1874 (1980).Google Scholar
  5. 5.
    G. Kotel'nikov, Group-Theoretic Methods in Physics [in Russian], Nauka, Moscow (1983), pp. 429–431.Google Scholar
  6. 6.
    D. R. Truax, J. Math. Phys. I,22, 1959–1964 (1981); J. Math. Phys. II,23, 43–54 (1982).Google Scholar
  7. 7.
    E. G. Kalnins and W. Miller, J. Math. Phys.,28, 1005–1015 (1987).Google Scholar
  8. 8.
    V. N. Shapovalov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 116–122 (1978); No. 6, 7–10 (1978).Google Scholar
  9. 9.
    A. O. Barut and R. Raczka. Theory of Group Representations and Applications, World Scientific, Singapore (1987).Google Scholar
  10. 10.
    C. Boyer, E. Kalnins, and W. Miller, J. Math. Phys.,18, 271–281 (1987).Google Scholar
  11. 11.
    V. G. Bagrov, B. F. Samsonov, and A. V. Shapovalov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 5–9 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. G. Bagrov
    • 1
  • B. F. Samsonov
    • 1
  • A. V. Shapovalov
    • 1
  1. 1.V. D. Kuznetsov Siberian Physicotechnical InstitutemTomsk UniversityRussia

Personalised recommendations