Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Canonical transformation method in classical electrodynamics

  • 28 Accesses


The solutions of Maxwell's equations in the parabolic equation approximation is obtained on the basis of the canonical transformation method. The Hamiltonian form of the equations for the field in an anisotropic stratified medium is also examined. The perturbation theory for the calculation of the wave reflection and transmission coefficients is developed.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    G. D. Malyuzhinets, Usp. Fiz. Nauk, 49, No. 2, 321 (1959).

  2. 2.

    G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience (1974).

  3. 3.

    B. B. Kadomtsev and V. I. Karpman, Usp. Fiz. Nauk,103, (2), 193 (1971).

  4. 4.

    V. I. Karpman, Nonlinear Waves in Dispersive Media [in Russian], Nauka, Moscow (1973).

  5. 5.

    V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of Short-Wave Diffraction [in Russian], Nauka, Moscow (1972).

  6. 6.

    L. A. Vainshtein, Open Resonators and Open Waveguides [in Russian], Sov. Radio, Moscow (1966).

  7. 7.

    S. M. Rytov, Introduction to Radio Physics [in Russian], Nauka, Moscow (1966).

  8. 8.

    N. N. Bogolyubov, Selected Works [in Russian], Naukova Dumka, Kiev (1970–1971).

  9. 9.

    Yu. G. Pavlenko, Teor. Mat. Fiz.,49, No. 1, 92 (1981).

  10. 10.

    Yu. G. Pavlenko, Vestn. Mosk. Univ., Ser. Fiz. Astron.,23, No. 2, 61 (1982).

  11. 11.

    V. E. Zakharov, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,17, No. 4, 431 (1974).

  12. 12.

    H. Goldstein, Classical Mechanics, Addison-Wesley (1950).

  13. 13.

    N. N. Bogolyubov and D. V. Shirkov, Quantum Fields [in Russian], Nauka, Moscow (1980).

  14. 14.

    L. M. Brekhovskii, Waves in Stratified Media [in Russian], Nauka, Moscow (1973).

  15. 15.

    V. I. Tatarskii, Propagation of Waves in the Turbulent Atmosphere [in Russian], Nauka, Moscow (1967).

  16. 16.

    R. Newton, Scattering Theory of Waves and Particles, McGraw-Hill (1966).

  17. 17.

    A. L. Zubarev, The Schwinger Variational Principle in Quantum Mechanics [in Russian], Energoizdat, Moscow (1981).

  18. 18.

    C. Chadan and P. Sabatier, Inverse Problems in the Quantum Theory of Scattering [Russian translation], Mir, Moscow (1980), p. 363.

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 46–50, August, 1983.

In conclusion, the author thanks A. A. Sokolov for discussion of the work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pavlenko, Y.G. Canonical transformation method in classical electrodynamics. Soviet Physics Journal 26, 716–720 (1983). https://doi.org/10.1007/BF00898881

Download citation


  • Reflection
  • Perturbation Theory
  • Parabolic Equation
  • Transmission Coefficient
  • Transformation Method