Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Random fields in Ge-Si alloys produced by doping

  • 13 Accesses


A calculation is performed and estimates made of the binary correlation functions of the random field produced by the difference in the atomic pseudopotentials of solvent and dissolved materials. Also evaluated are elastic deformation fields in unordered Ge-Si solid replacement solutions with low Si content (up to 10 at. %).

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. Levitas, Phys. Rev.,99, No. 6, 1810 (1955).

  2. 2.

    M. Gliksman, Phys. Rev.,100, 1146 (1955).

  3. 3.

    M. Gliksman, Phys. Rev.,111, No. 1, 125 (1958).

  4. 4.

    S. Ishida and E. Otzuka, J. Phys. Soc. Jpn.,24, No. 3, 506 (1958).

  5. 5.

    L. Nodheim, Ann. Phys.,9, 607 (1931).

  6. 6.

    V. L. Bonch-Bruevich et al., Electronic Theory of Unordered Semiconductors [in Russian], Nauka, Moscow (1981).

  7. 7.

    O. V. Konstantinov, Sh. K. Nasibullaev, and M. M. Panakhov, Fiz. Tekh. Poluprovodn.,11, No. 5, 881 (1977).

  8. 8.

    M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals [in Russian], Naukova Dumka, Kiev (1983).

  9. 9.

    A. G. Samoilovich and V. D. Iskra, Fiz. Tverd. Tela,11, No.11, 2827.

  10. 10.

    V. Heine, M. Cohen, and D. Wire, Pseudopotential Theory [Russian translation], Mir, Moscow (1973).

  11. 11.

    K. Seeger, Semiconductor Physics [Russian translation], Mir, Moscow (1977).

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 41–46, February, 1987.

The author heartily thanks V. L. Bonch-Bruevich for his interest in the current study and many valuable discussions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iskra, V.D. Random fields in Ge-Si alloys produced by doping. Soviet Physics Journal 30, 126–130 (1987). https://doi.org/10.1007/BF00898150

Download citation


  • Correlation Function
  • Random Field
  • Elastic Deformation
  • Deformation Field
  • Replacement Solution