Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photothermal and photoacoustic effects in semiconductors and semiconductor structures

Abstract

A theory of photothermal and photoacoustic effects is developed, on which the contactless diagnostics of semiconductors and semiconductor structures are based. Photothermal and photoacoustic effects are characterized quantitatively by the variable temperature of the specimen surface being exposed and by its shift. These quantities are computed in this paper for a homogeneous semiconductor and a semiconductor with a p-n junction with electron transfer processes, heat liberation as a result of thermalization and charge carrier recombination and their passage through the potential barrier as well as nonthermal deformation mechanisms due to nonequilibrium carrier interaction with the lattice in terms of the deformation potential and the reverse piezoeffect taken into account. It is shown that the surface temperature and shift (particularly the phase of these responses) carry information about such semiconductor characteristics as the charge carrier lifetime, the surface recombination rate, the deformation potential constants, the depth of p-n junction location, the height of its potential barrier, etc.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. Rosenzweig (Rosencwaig), J. Phys. Coll. C6, Suppl.,44, No. 10, 6-A37 (1983).

  2. 2.

    S. O. Kanstad and P. E. Nordal, Phys. Scripta,20, 659 (1979).

  3. 3.

    A. Rosenzweig (Rosencwaig) and A. Gersho, J. Appl. Phys.,47, No. 1, 64 (1976).

  4. 4.

    W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Opt.,20, No. 8, 1333 (1981).

  5. 5.

    A. Skumanich, D. Fournier, A. C. Boccara, and N. M. Aher, Appl. Phys. Lett.,47, No. 4, 402 (1985).

  6. 6.

    H. Dersch and N. M. Amer, Appl. Phys. Lett.,47, No. 3, 292 (1985).

  7. 7.

    M. A. Olmstead, N. M. Amer, et al., Appl. Phys. A,32, No. 2, 141 (1983).

  8. 8.

    J. Opsal, A. Rosenzweig (Rosencwaig), and D. L. Willenborg, Appl. Opt.,22, No. 20, 3169 (1983).

  9. 9.

    W. B. Jackson and N. M. Amer, J. Appl. Phys.,51, No. 6, 3343 (1980).

  10. 10.

    A. A. Karabutov, Usp. Fiz. Nauk,147, No. 3, 605 (1985).

  11. 11.

    V. A. Sablikov and V. B. Sandomirskii, Phys. Status Solidi (b),120, No. 2, 471 (1983).

  12. 12.

    V. A. Sablikov, V. B. Sandomirskii, and M. G. Evtikhov, Preprint 16(371), Inst. Radio Eng. Electron., Academy of Sciences of the USSR, Moscow (1983).

  13. 13.

    W. B. Gauster and D. H. Habing, Phys. Rev. Lett.,18, No. 24, 1058 (1967).

  14. 14.

    S. M. Avanesya, V. E. Gusev, and N. I. Zheludev, Appl. Phys. A,40, No. 3, 163 (1986).

  15. 15.

    V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors [in Russian], Nauka, Moscow (1977).

  16. 16.

    D. Cahen and S. D. Halle, Appl. Phys. Lett.,46, No. 4, 446 (1985).

  17. 17.

    H. Flaisher and D. Cahen, IEEE Trans. Ultrason, Ferroelec., and Freq. Contr.,33, No. 5, 662 (1986).

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 119–131, June, 1987.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasil'ev, A.N., Sablikov, V.A. & Sandomirskii, V.B. Photothermal and photoacoustic effects in semiconductors and semiconductor structures. Soviet Physics Journal 30, 544–554 (1987). https://doi.org/10.1007/BF00897344

Download citation

Keywords

  • Charge Carrier
  • Carrier Lifetime
  • Electron Transfer Process
  • Surface Recombination
  • Semiconductor Structure